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 Abstract

Group theory principles were applied and the transformation of the x, y, z vectors
on each atom caused by symmetry operations were observed to obtain the 3N basis
vector representations 3N,  of NiCl4 , Al2Cl6 and Fe(CO)5. The identified infra-red

active modes and Raman active modes were then assigned to the experimental spectral
frequencies by using the projection operator method.
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Introduction

The number, types and the selection rules
for vibrational transitions may be determined solely
by reference to symmetry properties of molecules
(Thomas 1974). Such symmetry simplifies the
analysis of vibrational modes and vibrational
spectra (Alberty and Daniels 1979). Molecular
symmetry allows prediction of its infra-red or
Raman spectrum; and vice versa (Ferraro and
Ziomek 1975). The vibrational modes of a
molecule may be classified into various types, such
as bond stretches, and bond angle deformations. It
is possible to determine the number and symmetry
species of each type.

Continued interest in the field is shown by
the appearance of many publications such as
Buchachenko and Stepanov (1996); Eryomin et
al. (1996 & 2000); and Scherbinin et al. (1996).

Group theory by itself cannot predict the
frequency of a particular vibration, but fairly
accurate guesses can be made when combined
with accumulated experiences of molecular
spectroscopists  (Cotton 1971; Kyi 1990).

 The prediction requires a number of
molecular structural parameters, such as bond
lengths and bond angles, in addition to a
knowledge of appropriate force constants.

Then Wilson’s F and G matrix method is
applied after constructing the required
symmetry adapted linear combinations (SALC).
(Wilson et al. 1955).

In principle the vibrational spectrum of any
molecule can be analyzed to give specific
frequency assignment to every vibrational mode.
But in practice, several complicating factors must
be taken into account. Factors such as combination bands,
difference bands and overtone bands caused by
combination of fundamental vibrations; ambiguities
with respect to molecular or ionic structure
(Davidson 1971); accidental degeneracy; and
Fermi resonance (Siebrt 1966).

Vibrational Mode Assignment of
Some Molecules and Ions

Nickel Tetrachloride Ion

For vibrational mode classification, the
normal modes are expressed as functions of a set
of internal displacement vectors which yield
information on bond stretching and bond bending
contributions to different symmetry normal modes
(Cotton 1971). The projection operator method is

a very powerful method for explicit information on



vector bases for irreducible representations
(Wilson et al. 1955).

The ion has a square planar structure with a
nickel ion at the center of a square plane,
surrounded by four chloride ions at the corners.
Hence it has a D4h symmetry (Kyi and Win

2001). The four Ni-Cl bonds which lie in a square
planar structure of the nickel tetrachloride ion can
stretch and contract in various combi-nations and
are designated as bond stretching internal
displacement vectors v1, v2, v3 and v4.

The same four Ni-Cl bonds can move
above and below the plane of the ion structure,
giving rise to four out-of-plane deformation vectors
d1, d2, d3, and d4, another set of internal

displacement vectors.
The four Cl-Ni-Cl bond angles can expand

and contract, giving yet another set of internal
displacement vectors δ1, δ2 , δ3, and δ4   called

in-plane deformation vectors.
The str. is found by using the above bond

stretching internal displacement vectors v1, v2, v3
and v4 as basis. By applying the same procedure

as before (Kyi and Win 2001). The irreducible
representation obtained from the D4h point group

tables, yield the following result.

str. = A1g ⊕   B1g  ⊕    Eu  ...……..........(1)

Similarly  opd is found by using the above
four out-of-plane deformation internal
displacement vectors d1, d2 , d3, and d4 as basis.

opd = Eg ⊕  A2u ⊕  B2u ………...............(2)

3N (genuine vibrations) does not contain
Eg (Win and Kyi 2000), hence it must correspond

to a pair of redundant coordinates. Eg is thus

neglected.

opd = A2u ⊕  B2u   …..…….............(3)

 ipd is obtained by using the δ1, δ2 , δ3,

and δ4 as basis.

ipd = A1g ⊕   B1g  ⊕   Eu  ………............(4)

The A1g is redundant as all four angles

increasing or decreasing simultaneously in a plane
is physically impossible. Hence it is neglected.
Thus:

                         ipd = B1g ⊕   Eu  .............(5)

In some cases, such as NiCl bond stretches,
fundamental modes may be found by applying
projection operators P.

Stretching Modes

The operation of the projection operators of
A1g, B1g and Eu symmetries (Equation 1) on v1
yield the following:

P[A1g ]v1 = v1 +  v2  +  v4 + v3 + v1 + v3 +

v2 +  v4  + v3 +  v2  +  v4 + v1   

                 = 4v1 +  4v2  +  4v3  +  4v4    

                 =  v1 +  v2  +  v3  +  v4  .............(6)

P[B1g]v1  =  v1 - v2  +  v3  -  v4    ..............(7)

P [Eu]v1   =  v1 - v3                       ..............(8)

Equation 6 shows that the A1g mode

includes simultaneous equal amplitude bond
stretching of all four bonds.

Equation 7 shows that the B1g modes has

one pair of bonds (v1 & v3) are out of phase by π

from another pair of bonds (v2 & v4) i.e. while

one pair is stretching the other pair is contracting.
Equation 8 shows that in the Eu  mode the

pair of bonds (v2 & v4) do not vibrate while (v1
& v3) are in opposite phase. Since the Eu mode is

doubly degenerate it will contain two fundamental
modes. The reduction of Eu will yield two

representations involving complex numbers e and
e* (complex conjugate), from which the two true
fundamental modes can be determined.

Out-of-plane  Deformation



      P[A2u] d1 = d1 + d2 + d3 + d4 ............ (9)

      P[B2u] d1 = d1 - d2 + d3 - d4 ............ (10)

Equation 9 shows that all four bonds
simultaneously bend upwards from the plane, in-
phase and to the same extent. Equation 10 shows
bonds 1 and 2 bend upwards while 2 and 4 bend
downwards to the same extent.

In-plane Deformation

   P[A2u] δ1  =  δ1+  δ2 +  δ3 +  δ4 ...........(11)

   P[B2g] δ1  =  δ1 -  δ2 +  δ3  -  δ4...........(12)

   P [Eu] δ1   =  δ1-  δ3 …………..............(13)

Equation 11 shows the simultaneous
expansion of all four angles. It is physically
impossible and is therefore redundant. Equation 12
shows that the pair of angles (δ1 & δ3) expand

while the other pair of angles (δ2 & δ4) contract,

i.e. elongation of a pair of two opposing sides of
the square planar ion structure at the same time
when the other pair of two opposing sides is
contracting.  Equation 13 shows that angle δ1
expands while angle δ3 contracts and vice versa.

In other words when angle δ1 expands the side

extending that angle expands while the side
extending angle δ3 contracts; and when angle δ1
contracts the side extending that angle contracts
while the side extending angle 3 expands.

Aluminum Chloride

The molecule has a square planar shape with
two chlorine - Cl and two aluminum - Al atoms at
alternate corners. Each of the two aluminum atoms
have two other chlorine atoms attached, forming
AlCl2 groups which extend outside the base square
plane. Thus the molecule has a D2h symmetry

(Win and Kyi 2001).
The four sides of the square planar base are

designated as bond stretching internal displacement
vectors v1, v2, v3 and v4. The four Al-Cl bonds

extending outside the square planar base are

labeled v5,  v6,  v7 and v8. These describe the

stretching modes.

The angles surrounding one Al atom, on one
corner of the square planar base, are denoted as δ

1, δ2, δ3, and δ4, starting from the inner angle

going in a clockwise direction. Similar angles  δ5,

δ6, δ7, and δ8 are defined for the angles

surrounding the other Al atom. The two angles Al-
Cl-Al on opposite corners of the square planar
base are δ9 and δ10. These constitute the in-plane

internal displacement vectors.
The eight bonds, four on each Al atom, can

move up and down from the base plane. These
angles are denoted d1,  d2,  d3,  d4, d5,  d6,  d7,

and d8 .  The projection operators are applied as

before and the results obtained are shown in Table
1.

Iron Carbonyl

The molecule has a triangular base with Fe
at the center and three carbon atoms at the three
apexes. Each of the carbon atoms is bonded to an
oxygen atom forming a carbonyl group >C=O.
Thus, there are three carbonyl groups at the
apexes. In addition there are two carbonyl groups
outside the base plane, one above and one below
the base plane. It belongs to the D3h point group

(Cotton et al. 1958; Ware 1970).

The Fe-C bonds in the base plane are
designated as v1, v2, and v3. The associated

carbonyl bonds are designated as v4, v5, and v6.

The Fe-C bonds above and below the base plane
are designated as v7 and v8; and the associated

carbonyl bonds are designated as v9 and v10.

The three angles surrounding the Fe atom in
the base plane are named δ1, δ2, and δ3. The

angles on each side of the three carbon atoms in
the apex carbonyl groups are called δ4 and δ5; δ6
and δ7; and  δ8 and δ9. These are the in-plane

bending vectors.



The three Fe-C bonds in the base plane d1,

d2, and d3 and the three >C=O bond d4, d5, and

d6 are out-of-plane bending vectors.

The projection operators are applied as
before and the results obtained are shown in table
2. It is interesting to note that application of the

projection operator P[E'] on δ4  annihilates  δ5, δ

7, and δ9 out of a six member set of vectors {δ4,

δ6, δ8, δ5,  δ7, δ9}. The same operator P[E']  on

δ5  annihilates  δ4, δ6,   and  δ8.  This is because

the sub-sets {δ5, δ7, δ9} and {δ4, δ6, δ8} are

not independent with respect to C2 and σv. Thus

the operator P[E']   is applied to both subsets.
Hence it is advisable to be on the look out for cases
where some elements of a basis set disappear on
application of a projection operator.

Frequency Assignment

Group theory can be used up to this stage
only. It can only reveal the number and symmetry
types of the different possible modes. For
assignment of known frequencies theoretical
calculations using F and G matrices, based on
molecular properties such as group-masses, bond
strengths and force constants, are required. The
calculations yield frequencies for specific modes.
The experimental frequency nearest to the
calculated frequency is assigned that mode.
Frequency assignment of Al2Cl6 modes is shown in
Table 3 (Klemperer 1956).

Conclusion

The difficulty of vibrational analysis increases
with structural complexity. This is partly because
structural complexity makes complete identification
of internal coordinates (true basis vectors) difficult.
Some coordinates can often be missed out.

Thus it is advisable to check that:

vibration (genuine) =   Σi i  , where  i are

str  , ipd ,  opd ... etc...

Acknowledgement

The authors are indebted to Yangon
University and Assumption University for
permission to accomplish this work.

References

Alberty, R. A.; and Daniels, F. 1979. Physical 
Chemistry, 5th ed. John Wiley, New York.

Buchachenko, A.A.; and Stepanov, N. F. 1996.
Ar-I2 Interactions: Models based on the
diatomics in molecule approach. J. Chem.
Phys. 104 (24): 9913-25.

Cotton, F.A. 1971. Chemical applications of 
group theory. John Wiley, New York.

Cot ton ,  F .A. ;  Danti, A.; Waugh, J.S.; and 
Fessender, R.W. 1958. Vibrational modes.  J.

Chem. Phys. 29:1427-40.
Davidson, G. 1971. Introductory group theory for 

chemists. Applied Science Publ., London.
Eryomin, V.V.; Kuz'menko, N. E.; and Umanskii,

I. M. 1996. Interference effects in wave packet
dynamics at the pulse optical excitation of a
diatomic molecule. Khim.Fiz. 15 (5): 5-12 .

Eryomin, V.V.; Kuz'menko, N.E.; and Umanskii,
I.M. 2000. Wavepacket dynamics in the
ground electronic state of a diatomic molecule.
Chem. Phys. Lett. 316 (3-4): 303-10.

Ferraro, J.R.; and Ziomek, J.S. 1975.
Introductory group theory and its application to
molecular structure. 2nd ed. Plenum Press, New
York.

Klemperer, W. 1956. J. Chem. Phys. 24: 353-7.
Kyi, N. 1990. Group Theory - Applications in 

Vibrational Analysis. M. Phil. dissertation. 
Yangon University, Yangon, Myanmar.

Kyi, N.; and Win, D.T. 2001. Group theory

applications to vibrational modes. AU J.T. 5:
1-4.



Scherbinin, A.V.; Pupyshev, V.I.; and  Stepanov,
N.F. 1996.  On the use of multipole  expansion
of the Coulomb potential in quantum chemistry.
Int. J. Quant. Chem. 60: 843-52.

Siebrt, H. 1966. Anwendungen der Schwingungs-
spektroskopie in der Anorganischen Chemie.
Springer, Berlin.

Thomas, C.H. 1974. Group theory applications. 
J. Chem. Ed. 51: 91-7.

Ware, M. J. 1970. Physical methods in advanced
inorganic chemistry. Interscience, London.

Wilson, E.B., Jr.; Decius, J.C.; and Cross, P.C.
1955. Molecular Vibrations. McGraw-Hill,
New York.



Table 1. Fundamental modes of Al2Cl6

             Mode     Projector Projected vector   Remarks

       Stretching 2Ag     P[Ag ]v1 v1 +  v2  +  v3  +  v4    in-phase stretch

    P[Ag ]v5 v5 +  v6  +  v7  +  v8
2B1g     P[B1g ]v1 v1 -  v2  +  v3  -  v4    two opposing sets

    P[B1g ]v5 v5 -  v6  +  v7  -  v8
2B2u     P[B2u ]v1 v1 +  v2  -  v3  -  v4    redundant mode

    P[B2u ]v5 v5 +  v6  -  v7  -  v8
2B3u     P[B3u ]v1 v1 -  v2  -  v3  +  v4

    P[B3u ]v1 v5 -  v6  -  v7  +  v8
  In-plane bend  4Ag     P[Ag] δ1    δ1+  δ7

    P[Ag] δ6  δ9+  δ10

    P[Ag] δ5  δ3 +  δ5

    P[Ag] δ9  δ2+  δ4 +  δ6 +  δ8
1B1g     P[B1g] δ1   0

    P[B1g] δ6  δ4+  δ6 -  δ2 -  δ8

    P[B1g] δ5 & P[B1g] δ9   0

2B2u     P[B2u] δ1  0

    P[B2u] δ6  δ2 -  δ4 +  δ6 -  δ8

    P[B2u] δ5  0

    P[B2u] δ9  δ9 -  δ10    physically impossible

3B3u     P[B3u] δ1  δ1 -  δ7     physically impossible

    P[B3u] δ1  δ6+  δ8 -  δ2 -  δ4

    P[B3u] δ1  δ5 - δ3

    P[B3u] δ1  0

   Out-of-plane 2B2g     P[B2g] d1 d1 + d2 - d5
   bend     P[B2g] d3 d3 - d4 + d8     physically impossible

2B3g     P[B3g] d1 d1 - d2 + d5

    P[B3g] d3 d3 + d4 - d8     physically impossible
2Au     P[Au] d1 d1 - d2 - d5

    P[Au] d3 d3 - d4 - d8     physically impossible

2B1u     P[B1u] d1 d1 + d2 + d5

    P[B1u] d3 d3 + d4 + d8



Table 2. Fundamental modes of Fe (CO)5

             Mode Projector Projected vector Remarks

     Stretching  4A1
' P[A1

']v1 v1 +  v2  +  v3    non-redundant

P[A1
']v8 v8 +  v9    physically possible

P[A1
']v7 v7 +  v10    modes

P[A1
']v4 v4 +  v5  +  v6

2E' P[E']v1 2v1 -  v2  -  v3       non-redundant

P[E']v8  &  P[E']v7 0       possible modes

P[E' ]v4 2v4 -  v5  -  v6
2A

2
" P[A2"]v1 0     non-redundant

P[A2"]v8 v8 -  v9      possible modes

P[A2"]v7 v7 -  v10
P[A2"]v4 0

In-plane bend  2A1
'  P[A1

'] δ1    δ1+  δ2 +  δ3    redundant, impossible

P[A1
'] δ4  δ4+  δ5 +  δ6+  δ7 +  δ8 +  δ9    ditto

3E' P[E'] δ1    2δ1-  δ2 -  δ3

P[E'] δ4  2δ4 -  δ6 -  δ8

P[E'] δ5  2δ5 -  δ7 -  δ9

1A2
' P[A2

'] δ1  0

P[A2
'] δ6  δ4  - δ5 +  δ6 -  δ7 +  δ8 -  δ9

Out-of-plane 2A2
" P[A2

"] d1 d1 + d2 + d3

    bend P[A2
"] d4 d4 + d5 + d6    two modes are same

2E" P[E"] d1 2d1 - d2 - d3

P[E"] d4 2d4 - d5 - d6                two modes are same

Top & bottom A1
' P[A1

'] δ1  δ1+ δ2 + δ3+  δ4+ δ5 + δ6    all are physically

>C=O bend E' P[E'] δ1  2δ1- δ2- δ3 + 2δ4 - δ5 - δ6    impossible modes



A2
" P[A2

"] δ1  δ1+  δ2 +  δ3 - δ4 - δ5 - δ6

E" P[E"] δ1  2δ1-  δ2 - δ3 - 2δ4+ δ5 + δ6



Table 3. Al2Cl6 Frequencies

Symmetry of fundamental mode      Experimental frequency / cm-1

Ag  ν1 = 506

 ν2  = 340

 ν3  = 217

 ν4  = 112

 Au  ν5  = ---

 B1g  ν6  = 438

 ν7  = 164

 B1u  ν8  = 625

 ν9  = ---

 ν10  = ---

 B2g  ν11  = 606

 ν12  = 164

 B2u  ν13  = ---

 ν14  = ---

 B3g  ν15  = ---

 B3u  ν16  = 484

 ν17  = ---

 ν18  = ---


