
AU J.T. 18(1): 36-47 (Jul. 2014)

Review Article 36

An Exploratory Survey of Phase-wise Project Cost Estimation Techniques

Peraphon Sophatsathit

Advanced Virtual and Intelligent Computing (AVIC) Center

Department of Mathematics and Computer Science

Faculty of Science, Chulalongkorn University, Bangkok, Thailand

E-mail: <speraphon@gmail.com>

Abstract

This article explores a number of existing project cost estimation techniques to

investigate how the estimation can be done in a more accurate and effective manner.

The survey looks into various estimation models that utilize many theoretical techniques

such as statistics, fuzzy logic, case-based reasoning, analogies, and neural networks. As

the essence of conventional estimation inaccuracy lies in life cycle cost drivers that are

unsuitable to be applied across the project life cycle, this study introduces a phase-wise

estimation technique that posits some overhead and latency costs. Performance

evaluation methods of the underlying phase-wise principle are also presented.

Contributions of this phase-wise approach will improve the estimation accuracy owing

to less latency cost and increase the project visibility which in turn helps the project

managers better scrutinize and administer project activities.

Keywords: Phase-wise effort estimation, fine-grained estimation, cost driver,

overhead cost, latency cost.

1. Introduction

Software project cost estimation has

plagued the software industry since the early

years of software engineering. From the call for

bidding to closing of project, the success and

failure are attributed to how well the project is

managed to keep everything in perspective, in

particular, not exceeding the budget. Many

projects ended with bad notes. The culprit lies

in the root cause of cost estimation which is

primarily derived from effort estimation. In a

typical project management process, the fact

that the project life cycle (LC) spans over a

long period of time makes it hard to accurately

estimate the cost. Myriad of unanticipated risks

and uncertainties, not to mention the essence

and accidents of software engineering (Brooks

1987) and the metrics of software complexity

(Yu and Zhou 2010), often cause under- or

over-estimation that leads to project loss and

termination. A couple of compelling questions

that project managers often ask themselves are

what to measure and how to accurately

measure it. Experience tells us that both project

effort and metrics are means to the solutions of

the above questions. Unfortunately, the answer

to the first question cannot be precisely and

directly determined in advance so that planning

of the project can be carried out systematically.

In the meantime, the attempt to answer the

second question calls for some forms of cost

estimation modeling in order to arrive at an

educated guess that furnishes necessary and

pertinent information to plan the project. The

conventional state-of-the-practice usually

employs classical or established project LC

models for effort estimation such as waterfall

model, spiral model, SLIM model/Putnam

model (Putnam 1978), COnstructive COst

MOdel (COCOMO 81 (Boehm 1981) and

COCOMO II (Boehm et al. 2000), Walston-

Felix model (Walston and Felix 1977), Bailey-

Basili model (Bailey and Basili 1981),

Albrecht-Gaffney model (Albrecht and

Gaffney 1983), Kemerer empirical model

(Kemerer 1987), and Matson, Barrett and

Mellichamp model (Matson et al. 1994). These

models culminate in practical cost estimation

based on well-defined software metrics,

namely, lines of code (LOC), function point

(FP) (Albrecht 1979), use case point (UCP)

(Karner 1993), application point (AP) (Boehm

et al. 2000), delivered source instructions

AU J.T. 18(1): 36-47 (Jul. 2014)

Review Article 37

(DSI), unadjusted use case point (UUCP), etc.

All of these approaches use the project

lifecycle in the estimation process. The results

unfortunately yield a number of estimation

errors such as phase overhead and phase-

transition overhead. These cost factors

hereafter will be referred to as latency

overheads. The above undertakings are still far

from gaining accurate estimation. The

measurement accuracy is still a subject to

validation that involves a wide array of

techniques. Research approaches are underway

to attain accurate effort estimation, for

instance, statistical inferences, parametric

modeling, knowledge-based modeling, case-

based reasoning, fuzzy logic, neural networks,

and analogies (Shepperd and Schofield 1997;

Li et al. 2007). The question is how well the

methods proposed by these models perform as

far as the measurement error from the data sets

and the comparative performance statistics with

other techniques are concerned.

This paper surveys alternate approaches

on project cost estimation based on current and

emerging research endeavors. The survey

encompasses various research attempts and

emerging viewpoints that propose a breakdown

of the project LC in order to perform fine-

grained estimation at phase level. As such, the

total project effort can be determined in a more

accurate manner. The pros and cons of these

approaches and viewpoints will be applicable

to actual project management and remain to be

validated during project implementation.

This paper is organized as follows.

Section 2 recounts some principal building

blocks that are applied in many studies. Section

3 describes phase-wise estimation approaches

that apply to the conventional project LC.

Suggestions, prospects and future directions,

along with some final thoughts, are given in the

Conclusion.

2. Literature Review

There have been a number of research

endeavors to investigate project effort

estimation (Nasir 2006). A number of models,

techniques, tools, and metrics are used by the

principal investigators to improve the

measurement accuracy of the estimation based

on the most predominant cost driver, that is,

project size. The introduction of machine

learning has brought the researches in the area

to a new level. Integrated techniques, multi-

methods, and extensive measurement schemes

are being applied. Table 1 depicts a short

chronological list of such research works.

Table 1. A chronological review of effort estimation research works.

Author(s) (Year) Primary focus Approaches Evaluation

Kocaguneli et al. (2012) Ensemble Multimethods/solo method MAR, MMRE, MdMRE,
MMER, PRED(25),
MBRE, MIBRE

Dejaeger et al. (2012) Data mining OLS, OLS+log, OLS+BC,
Robust regression, Ridge
regression, Least median
squares, MARS, CART,
Model tree, MLP NN, RBFN,
CBR, LS+SVM

MdMRE, PRED(25),
Spearman’s rank
correlation

Port and Korte (2008) Model evaluation Models MMRE, PRED

Yang et al. (2008) Phase distribution Models KSLOC

Li et al. (2007) Analogy SIM MMRE, PRED(25)

Matson et al. (1994) Function point Models MRE

Kemerer (1987) Empirical model KSLOC MRE

Albrecht and Gaffney
(1983)

Function point,
source lines of code

FP, KSLOC MRE

Boehm (1981) / Boehm
et al. (2000)

COCOMO KDSI, KSLOC LOC

Albrecht (1979) Function point FP UFP

Putnam (1978) SLIM Norden/Rayleigh Regression

AU J.T. 18(1): 36-47 (Jul. 2014)

Review Article 38

As software becomes intertwined in

every facet of our lives, its application has been

internationally accepted and used. The needs

for standardizing its deliverables and

development process are key factors to

software products. Typical acclaimed standards

and working groups (WGs) are:

 16326 WG - Information Technology -

Software Engineering - Software

Project Management Working Group,

Institute of Electrical and Electronics

Engineers (IEEE);

 European Research Consortium for

Informatics and Mathematics (ERCIM)

Working Group Software Evolution;

 Project Management Institute (PMI)

and Project Management Body of

Knowledge (PMBOK
®
);

 International Organization for

Standardization (ISO)/ International

Electrotechnical Commission (IEC)

14143 [six parts] Information

Technology - Software Measurement -

Functional Size Measurement;

 ISO/IEC 19761:2011 Software

Engineering - Common Software

Measurement International Consortium

(COSMIC): A Functional Size

Measurement Method;

 ISO/IEC 20926:2009 Software and

Systems Engineering - Software

Measurement - International Function

Point Users Group (IFPUG) Functional

Size Measurement Method;

 ISO/IEC 24570:2005 Software

Engineering - Netherlands Software

Metrics users Association (NESMA)

Functional Size Measurement Method

Version 2.1 - Definitions and Counting

Guidelines for the Application of

Function Point Analysis; and

 ISO/IEC 20968:2002 Software

engineering - Mark-II Function Point

Analysis - Counting Practices Manual.

Extensive as they are, the above attempts

are based on the wide span of the project LC

that encompasses various unscrupulous

activities of the team. Some emerging

viewpoints on effort estimation have gradually

been investigated to unveil latency overheads.

The empirical findings usually are inapplicable

for accurate estimation purposes and the efforts

are expended to focus on specific areas of

application. User groups such as IFPUG and

ISBSG (International Software Benchmarking

Standards Group) are examples of domain

specific estimation. The project managers must

decide what data are to be collected to suit the

applicable domain. For example, if the project

managers decide to adopt the Constructive Cost

Model (COCOMO), they have to predict the

equivalent LOC for all upstream phases, i.e.,

requirements, planning, and design.

Yang et al. (2008) proposed a phase

distribution of the software development effort

showing where the workload is concentrated.

MacDonell and Shepperd (2003) proposed the

use of a completed project to predict the effort

needed for subsequent activities. Jodpimai et

al. (2010) explored the interrelationship among

different dimensions of projects. The inherent

characteristics of some activities are too

subjective to be measured either by overall or

discrete elements, thereby rendering inaccurate

estimation. Thus, breaking up in phases may

involve activities that cannot be directly

measured while traditional LC estimation

averages out such deficits in terms of an overall

figure. On the other hand, the measureable ones

often yield different project data based on

different models, metrics, and cost drivers. A

proposed novel framework on phase-wise

estimation breakdown in the conventional LC

model will be elucidated in the sections that

follow.

3. Phase-wise Approach in the

Conventional Lifecycle Model

There are many factors that must be

taken into account when selecting an

estimation technique suitable for a given

project. The most important one is the

designated project LC model whose

applicability depends primarily on several

project characteristics and dependencies. The

characteristics encompass attributes such as

complexity, development paradigm (object-

oriented, functional, agile) and mode (organic,

semi-detached, embedded), while the

dependencies include size, technology and

AU J.T. 18(1): 36-47 (Jul. 2014)

Review Article 39

metrics. In this survey, a classical project cost

estimation based on COCOMO II is employed

to demonstrate the combination of cost factors

involved in the estimation. Table A-1 in the

Appendix shows several necessary parameters

for estimation. However, the number of

parameters has been a formidable obstacle to

accurate effort estimation after project

inception. Several recent research findings

(Kocaguneli et al. 2012; Dejaeger et al. 2012)

advocate an ensemble of multiple estimation

methods taking joint attributes into account.

Kocaguneli et al. (2012) contended that there

exist best combinations of methods for effort

estimation. Nonetheless, the findings

encompassed too many features to estimate,

thereby the prediction accuracy had to be

evaluated with more stringent criteria with the

help of error evaluators such as mean

magnitude of relative error (MMRE),

percentage of relative error deviation (PRED)

(Port and Korte 2008; Foss et al. 2003), etc. As

mentioned earlier, most approaches deal with

overall numbers so that the underlying

estimation techniques cannot be generalized

from empirical findings to production. The fact

that different projects possess their own

process variations renders different project

effort estimations. This affects the accuracy of

the conventional LC estimation model. The

main deviation of the phase-wise approach is in

phase dependent cost drivers that differentiate

it from the conventional estimation. In the

conventional approach, same constituent cost

drivers are used to estimate the entire LC effort

and the corresponding project cost. In contrast,

the phase-wise approach utilizes selective cost

drivers depending on phase requirements,

nature of work, and deliverables. For instance,

the project size is unarguably the principal

estimator that is used throughout the entire

project LC. If the project is broken down into a

fine grain of measures on a phase basis, the

project size may no longer be the appropriate

cost estimator of the feasibility study and

requirement analysis phases. This technique is

essential and attributive in the establishment of

the proposed phase-wise estimation. The

following breakdown as shown in Fig. 1

elucidates a typical workflow of the phase-wise

estimation.

3.1 Data

collection

3.4 Cross

validation

Evaluate

model

Select best

K

3.5 Feature

selection

Remove

redundant

features

3.7 Test

model

End of K

folds?

3.3 Data

normalization

3.2 missing

valuse and

outliers

3.6 create model

from selected

features

Fig. 1. Phase-wise effort estimation flow.

3.1 Data Collection

The proposed novel phase-wise approach

will utilize the conventional waterfall model

where each phase is well defined and known by

all software developers. Due to the

unprecedented phase-wise effort estimation

approach, industrial data, especially existing

standard benchmarking archives such as

COCOMO81, NASA93, Desharnais, USP05,

MAXWELL, etc., were available (PROMISE

2014) in overall LC figures. This survey will

explore how the proposed novel approach can

be put to production use.

The process begins by collecting data of

each phase. The uppercase phases, i.e.,

requirements, specifications and design, will

employ functional size measurement (Gencel

and Demirors 2008) and the like as techniques

for effort estimation.

The lowercase phases, on the other hand,

can incorporate LOC metrics as additional

details are available for fine-grained

estimation. This sizing scheme may, at the first

glance, appear to be a mixture of FP and LOC.

Fortunately, the former metric can be converted

to the latter via backfiring (Jones 1995).

Table 2 depicts a typical series of

activities during the course of project

execution. The information can then be used to

estimate the phase-wise effort. The overall

project figure is obtained from the sum of

constituent phases. As such, any “latency

overhead” will be uncovered on an individual

phase basis to yield fine-grained effort

estimation.

AU J.T. 18(1): 36-47 (Jul. 2014)

Review Article 40

Table 2. Project phase-wise activities and metrics.

Activity Input Output Estimation metrics

Software
Requirements
Specification (SRS)

No. of team members Functionality FP

Design No. of requirements/member Functional model FP

Coding Design document Code LOC

Testing No. of reworks No. of errors/module LOC

Implementation No. of transactions from production code DSI LOC

3.2 Missing Value and Outlier

This step is designed to serve as an early

data correction exercised immediately after

data collection. Tsunoda et al. (2011) exploited

such early warnings of two problems, namely,

missing value and outlier detection. The former

is an inherent phenomenon in project

management where numerous small activities

are accounted for such as color change of status

bar, alternate display of normal time to military

time, or renaming of a counter variable to make

it more meaningful, etc. The efforts spent on

corrections are insignificant to be recorded but

appear on requests for change or maintenance

reports. The latter, on the contrary, result from

exceptional situations where unusually high or

low values are recorded, for example heavy fire

damage in the data center that caused

considerable recovery effort and project delay,

or the arrival of a new and highly efficient

integrated development environment (IDE) tool

that helped speed up the development time in

considerably less effort, yielding lower actual

effort spent than already estimated.

One of the most popular and effective

techniques to handle missing values is the k-

nearest neighbor (k-NN) imputation (Keller et

al. 1985). It uses k data points from the closest

proximity of the missing value position to

interpolate the most likely value. This

imputation might incur some errors if the

actual values were not missing. The use of

same feature value from other projects permits

cross validation that fills in the estimation of

the missing value to yield more accurate

results. This technique will be explained in

subsequent steps.

The measuring error is computed as the

Euclidean distance between the project having

missing values and the ones without. A small

value of the average of N measurements

signifies accurate prediction of missing values.

Outlier detection can be typically handled

by examining the kurtosis and skewness of the

data distribution. A normality test is set up to

be the null hypothesis based on z-score to

determine if there are possibilities that said null

hypothesis is accepted, i.e., p-value < 0.001.

On the contrary, if the null-hypothesis is

rejected, the highest value is treated as the

outlier and is discarded. This process is

repeated until all outliers are removed.

3.3 Data Normalization

The above two steps merely acquire input

data from various sources which could be of

different ranges and magnitudes. A standard

technique to linearly scale data of different

ranges to the same scale, yet still preserve the

relationship with the original value, is carried

out by Eq. (1) as follows:

 
 

  minminmax

minmax

min ˆˆˆˆ xxx
xx

xx
x 




 , (1)

where x̂ denotes the reference range, while x

denotes the individual range.

3.4 Cross-Validation

In a typical experiment, the data so

collected are divided into two non-overlapping

sets, that is, a training set and a test set. The

former is used in various parameter

adjustments during the model creation process,

whereas the latter is held out for the model

validation process. There are several

techniques available for cross validation

purposes. Two popular ones to be introduced

are the N-fold cross validation and leave-one-

AU J.T. 18(1): 36-47 (Jul. 2014)

Review Article 41

out cross validation techniques. In N-fold cross

validation, training data are randomly

partitioned into N subgroups. One group is

used as the test set and the rest are training sets.

This process is repeated N times. The leave-

one-out approach exhaustively uses one data

point at a time to test data and leave the rest of

the data to be the trained set. This approach is

very expensive and often used in a small

number of data points as opposed to the N-fold

technique that requires more data points to

support the random rotation process.

3.5 Feature Selection

This is perhaps the most important

activity of project cost estimation. Since all

participating cost factors in the estimation

process are features being selected from the

cost model, many existing estimation

techniques utilize several cost factors as

estimation parameters. For example, the

COCOMO model (Boehm et al. 2000) uses 17

cost drivers in the estimation process. Jodpimai

et al. (2010) found that only a handful of cost

drivers were effective factors that could derive

an estimation as accurate as the comparative

models without employing the full-fledged

parameter set. Moreover, fewer cost drivers

translated into faster computation time. The

findings revealed some interesting

consequences, e.g., certain features are vital

cost drivers that could yield accurate

estimation.

The process of acquiring good selected

features is straightforward. The first step is to

eliminate independent features that do not

contribute or affect the project effort

estimation. The next step is to reduce all

redundant features that are less relevant to the

project effort estimation. This is done by means

of Pearson’s correlation. Features that result in

a low value will be less relevant and thus

eliminated. Finally, only those features that are

related to effort estimation in the form of a

mathematical function will be retained

(Jodpimai et al. 2010).

There are a number of models that can be

used in the feature selection process, ranging

from conventional COCOMO, rational unified

process (RUP), statistical, and neural network

models. The basis for effort estimation must

rest on the proper use of these selected features

in the estimation process, thereby accurate

estimation results can be obtained. Table 3

depicts typical phase-wise features

participating in cost estimation.

Table 3. Common phase-wise costing features.

Group Feature Phase Attribute/activity

Uppercase Software complexity System analysis - Overview analysis

System design - Documentation

Analyst capability Architectural design - Design overview

Detailed design - I/O design
- Data/class design

Coding - Program/module structure

Lowercase Execution time Testing - Programming
- Unit and integration testing

Main storage Production - Installation
- Use/implement

Programmer capability Coding - Syntactic and logical details

3.6 Performance Evaluation

Some popular performance evaluation

methods and their corresponding effort

estimation metrics collected in this survey are

summarized in Table 4. Each method has its

own applicability to measure the relationship

between actual and predicted estimation results

based on the set of selected features. This in

turn yields accuracy of the estimation model

being employed.

AU J.T. 18(1): 36-47 (Jul. 2014)

Review Article 42

Table 4. Common methods/metrics for performance evaluation.

Metric Name Reference Remark

MRE Magnitude of Relative Error Tsunoda et
al. (2011)

 |y
’
i - yi|/yi

BRE Balanced Relative Error Kitchenham
et al.

(2001)
 |y

’
i - yi|/min(y

’
i, yi)

MER Magnitude of Error Relative Foss et al.
(2003)

 |y
’
i - yi|/y

’
i

MMRE Mean Magnitude of Relative Error Tsunoda et
al. (2011)  

n

i
MRE

n 1

1

PRED(l) Prediction at Level l Tsunoda et
al. (2011)  



 n

i

i

otherwise

lMREif

n 1 0

 11

MdMRE Median Magnitude of Relative
Error

Friedman
(1937)

 median (MRE)

Pearson’s correlation Relation between two sets of data
(estimated and actual)

Abran and
Robillard
(1996) YX

YX

YX




),cov(
, 

Friedman test Non-parametric hypothesis test as
an alternative to one-way ANOVA

Friedman
(1937)   


n

i

k

j ijr
nk

r
1 1

1

Wilcoxon matched pairs
signed-rank test

Non-parametric as an alternative
to parametric paired simple t-test

Rédei
(2008) ii xx ,1,2  , sgn(ii xx ,1,2 )

Kruskal-Wallis analysis
of variance (ANOVA) test

Non-parametric as alternative one-
way ANOVA > 3 samples

Vries and
Chandon

(2007)
K=(N-1)

 

  



 






g

i

n

j ij

g

i ii

i

rr

rrn

1 1

2

1

2

Model evaluation is usually carried out

by comparing the difference between predicted

(estimated) effort y’i and actual effort yi. The

effort is made on a phase basis using related

factors. For example, factors used in

requirements and specification effort

estimation involve FP to deal with both

functional and non-functional requirements. As

project requirements become materialized, size

estimation via LOC can be carried out more

accurately. Some metrics are criticized for

penalizing over-estimation (such as MRE),

while others are just the opposite (such as BRE

and MER). Two commonly used metrics are

MMRE and PRED (0.25) since they are

independent of units of measure and easy to

use. However, they are found to give

inconsistent results depending on the properties

of the distribution of y’i/yi. Occasionally,

MdMRE is used to solve the outlier problem as

MMRE cannot properly handle it. At any rate,

these two metrics will be adopted.

Since this survey also introduces a new

approach using phase-wise estimation to

predict fine-grained individual phase level cost

as opposed to the conventional overall LC

estimation, the metrics used are confined to the

same ones in order to keep the same working

parameters so that the results so obtained will

be comparable with those of the conventional

statistical techniques (Kitchenham et al. 2001).

4. Future Directions

This survey sets out to explore phase-

wise project cost estimation, aiming at more

accurate results than using the traditional LC

approach. The survey unveils some noteworthy

results that have potential benefits to software

project management.

Modern software products are short-

lived. Their development process cannot fit

into the traditional LC style, let alone analysis

and management. The proposed phase-wise

approach could open a new exploitation of

well-entrenched and practical techniques that

have already been put to use. This in turn

becomes an adoption of proven techniques

such as program slicing to new software

development techniques or management

approaches. The phase-wise analysis can serve

AU J.T. 18(1): 36-47 (Jul. 2014)

Review Article 43

as a scrutinized investigation provided that one

can find appropriate metrics and analysis

technique to handle it.

The essence of this phase-wise estimation

survey can be summarized as follows:

1) The phase-wise measurement is an inherent

rather than accidental characteristic of

project management. The nature of the

software development process irrespective

of the underlying model lends itself to

collecting data which are readily available.

What has not been done is the breakdown of

the activity structure. In addition, the

difficulty of data collection is seen as

disruptive and infeasible as many tasks are

operationally intertwined. This makes it

hard to succinctly separate.

2) The fact that a “phase” has been ingrained in

software engineering and has become a

stigma of software project management

makes it unfit to new software project

development paradigms such as agile and

aspect-oriented approaches. A closer look

into this survey reveals that this phase can

be generalized to fit the underlying

development process. For example, for an

input screen storyboard of an agile

development setting, the deliverables can be

viewed as one UI work product of the input-

output phase which is appropriately

measured as phase-wise results.

3) Existing available tools, techniques, and

metrics can be tailored to suit the phase

level without having to reinvent the wheel.

For example, project management tools can

easily be set to monitor the phase-wise

measurement.

4) New development paradigms, technologies,

and management techniques are required for

the success of phase-wise measurement. As

such, training to work with new procedures

and assessments is inevitable. Proper

planning must be carried out to set up the

necessary programs for all personnel

involved. Moreover, the activity measure

will be broken down to fine man-hour levels

to handle a smaller scale of required items.

The current work in progress using a

collection of industrial projects looks quite

promising as the number of cost factors is

reduced considerably without sacrificing

estimation accuracy.

5. Conclusion

This survey examines a number of

existing software project cost estimation

techniques and metrics from the project life

cycle standpoint. All research estimation works

are evaluated using well-established

measurement statistics. At any rate, the

inherent estimation error still persists. A novel

phase-wise approach is proposed as a

preliminary investigation to explore the

intricacy of project effort measurement so as to

arrive at more accurate estimation. A number

of benefits can be drawn from such an

elaborative approach:

1) One of the most important software project

management aspects is project visibility.

The project managers will be able to

monitor any activities or actions that have

gone awry in each phase and transition

between phases rather than prolonging them

until a catastrophic failure takes place.

2) More appropriate performance measures and

metrics can be applied in each designated

phase as opposed to using the traditional

“one size fits all” metric on the entire LC.

3) Fewer cost drivers are used. This means

faster and more accurate estimation than the

traditional LC approach as the cumulative

errors grow from being injected by too

many cost drivers.

4) The phase-wise activity breakdown offers

reduction or elimination of latent and

transition costs with better cost handling.

The project managers will be able to see the

hidden problems, effort duplication, and

overhead incurred within and between

phases.

This precursory survey furnishes a

preliminary overview of fine-grained

measurements in project cost estimation. The

project managers will have less of a burden on

cost estimation and more time to monitor

relevant project activities.

AU J.T. 18(1): 36-47 (Jul. 2014)

Review Article 44

6. References

Abran, A.; and Robillard, P.N. 1996. Function

points analysis: an empirical study of its

measurement processes. IEEE Transactions

on Software Engineering 22(12): 895-910.

Albrecht, A.J. 1979. Measuring application

development productivity. Proc. Joint

SHARE, GUIDE, and IBM Application

Development Symposium, Monterey, CA,

USA, 14-17 October 1979. Pp. 83-92. IBM

Press, Indianapolis, IN, USA.

Albrecht, A.J.; and Gaffney, J.E., Jr. 1983.

Software function, source lines of code, and

development effort prediction: a software

science validation. IEEE Transactions on

Software Engineering SE-9(6): 639-48.

Bailey, J.W.; and Basili, V.R. 1981. A meta-

model for software development resource

expenditures. Proc. 5
th

 Int. Conf. on

Software Engineering (ICSE), San Diego,

CA, USA, 9-12 March 1981. Pp. 107-16.

IEEE Press, Piscataway, NJ, USA.

Boehm, B.W. 1981. Software Engineering

Economics. Prentice Hall PTR, Upper

Saddle River, NJ, USA.

Boehm, B.W.; Abts, C.; Brown, A.W.;

Chulani, S.; Clark, B.K.; Horowitz, E.;

Madachy, R.; Reifer, D.J.; and Steece, B.

2000. Software Cost Estimation with

COCOMO II. Prentice Hall PTR, Upper

Saddle River, NJ, USA.

Brooks, F.P., Jr. 1987. No silver bullet -

essence and accidents of software

engineering. Computer 20(4): 10-9.

COCOMO II. 2000. Constructive Cost Models

(COCOMO) II - Model Definition Manual.

Version 2.1, 1995-2000. Center for Software

Engineering, School of Engineering,

University of Southern California (USC),

Los Angeles, CA, USA. Available:

<http://csse.usc.edu/csse/research/

COCOMOII/cocomo2000.0/CII_modelman

2000.0.pdf>.

Dejaeger, K.; Verbeke, W.; Martens, D.; and

Baesens, B. 2012. Data mining techniques

for software effort estimation: a comparative

study. IEEE Transactions on Software

Engineering 38(2): 375-97.

Foss, T.; Stensrud, E.; Kitchenham, B.; and

Myrtveit, I. 2003. A simulation study of the

model evaluation criterion MMRE. IEEE

Transactions on Software Engineering

29(11): 985-95.

Friedman, M. 1937. The use of ranks to avoid

the assumption of normality implicit in the

analysis of variance. Journal of the

American Statistical Association 32(200):

675-701.

Gencel, C.; and Demirors, O. 2008. Functional

size measurement revisited. ACM

Transactions on Software Engineering and

Methodology 17(3): Article 15, 36 pp.

Jodpimai, P.; Sophatsathit, P.; and Lursinsap,

C. 2010. Estimating software effort with

minimum features using neural functional

approximation. Proc. Int. Conf. on

Computational Science and Its Applications

(ICCSA), Fukuoka, Japan, 23-26 March

2010. Pp. 266-73. IEEE Computer Society,

Los Alamitos, CA, USA.

Jones, C. 1995. Backfiring: converting lines of

code to function points. Computer 28(11):

87-8.

Karner, G. 1993. Resource estimation for

objectory projects. Objective Systems SF

AB, Kista, Stockholm Municipality,

Sweden, 17 September 1993. Available:

<http://www.larmel.net/upload/Karner -

Resource Estimation for Objectory

Projects_56143.pdf>.

Keller, J.M.; Gray, M.R.; and Givens, J.A.

1985. A fuzzy K-nearest neighbor

algorithm. IEEE Transactions on Systems,

Man and Cybernetics SMC-15(4): 580-5.

Kemerer, C.F. 1987. An empirical validation of

software cost estimation models.

Communications of the ACM 30(5): 416-29.

Kitchenham, B.A.; Pickard, L.M.; MacDonell,

S.G.; and Shepperd, M.J. 2001. What

accuracy statistics really measure [software

estimation]. Proc. IEE Proceedings -

Software 148(3): 81-5.

Kocaguneli, E.; Menzies, T.; and Keung, J.W.

2012. On the value of ensemble effort

estimation. IEEE Transactions on Software

Engineering 38(6): 1,403-16.

Li, J.; Ruhe, G.; Al-Emran, A.; and Richter,

M.M. 2007. A flexible method for software

effort estimation by analogy. Empirical

Software Engineering 12(1): 65-106.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Keller,%20J.M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gray,%20M.R..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Givens,%20J.A..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=21
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=21

AU J.T. 18(1): 36-47 (Jul. 2014)

Review Article 45

MacDonell, S.G.; and Shepperd, M.J. 2003.

Using prior-phase effort records for re-

estimation during software projects. Proc.

9
th

 Int. Software Metrics Symposium.

(METRICS), Sydney, Australia, 3-5

September 2003. Pp. 73-86. IEEE Computer

Society, Los Alamitos, CA, USA.

Matson, J.E.; Barrett, B.E.; and Mellichamp,

J.M., 1994. Software development cost

estimation using function points. IEEE

Transactions on Software Engineering

20(4): 275-87.

Nasir, M. A survey of software estimation

techniques and project planning practices.

Proc. 7
th

 ACIS Int. Conf. on Software

Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed

Computing (SNPD), Las Vegas, NV, USA,

19-20 June 2006. Pp. 305-10. IEEE

Computer Society, Los Alamitos, CA, USA.

Port, D.; and Korte, M. 2008. Comparative

studies of the model evaluation criterions

MMRE and PRED in software cost

estimation research. Proc. 2
nd

 ACM-IEEE

Int. Symposium on Empirical Software

Engineering and Measurement (ESEM),

Kaiserslautern, Germany, 9-10 October

2008. Pp. 51-60. Association for Computing

Machinery (ACM), New York, NY, USA.

PROMISE. 2014. Public Datasets. Predictor

Models in Software Engineering

(PROMISE) Software Engineering

Repository, School of Information

Technology and Engineering, University of

Ottawa, Ottawa, Ontario, Canada.

Available: <http://promise.site.uottawa.ca/

SERepository/datasets-page.html >.

Putnam, L.H. 1978. A general empirical

solution to the macro software sizing and

estimating problem. IEEE Transactions on

Software Engineering SE-4(4): 345-61.

Rédei, G.P. 2008. Encyclopedia of Genetics,

Genomics, Proteomics and Informatics.

Volume 1: A-L. Volume 2: M-Z. 3
rd

 ed.

Springer, Dordrecht, The Netherlands.

Shepperd, M.; and Schofield, C. 1997.

Estimating software project effort using

analogies. IEEE Transactions on Software

Engineering 23(11): 736-43.

Tsunoda, M.; Kakimoto, T.; Monden, A.; and

Matsumoto, K.-I. 2011. An empirical

evaluation of outlier deletion methods for

analogy-based cost estimation. Proc. 7
th

 Int.

Conf. on Predictive Models in Software

Engineering (PROMISE). Banff, Canada,

20-21 September 2011. Article 17, 10 pp.

Association for Computing Machinery

(ACM), New York, NY, USA.

de Vries, D.K.; and Chandon, Y. 2007. On the

false-positive rate of statistical equipment

comparisons based on the Kruskal-Wallis H

statistic. IEEE Transactions on

Semiconductor Manufacturing 20(3): 286-

92.

Walston, C.E.; and Felix, C.P. 1977. A method

of programming measurement and

estimation. IBM Systems Journal 16(1): 54-

73.

Yang, Y.; He, M.; Li, M.; Wang, Q.; and

Boehm, B. 2008. Phase distribution of

software development effort. Proc. 2
nd

ACM-IEEE Int. Symposium on Empirical

Software Engineering and Measurement

(ESEM). Kaiserslautern, Germany, 9-10

October 2008. Pp. 61-9. Association for

Computing Machinery (ACM), New York,

NY, USA.

Yu, S.; and Zhou, S. 2010. A survey on metric

of software complexity. Proc. 2
nd

 IEEE

International Conference on Information

Management and Engineering (ICIME),

Chengdu, China, 16-18 April 2010. Vol. 2,

pp. 352-6. IEEE Press, Piscataway, NJ,

USA. Institute of Electrical and Electronics

Engineers, Inc. Representative Office,

Beijing, China.

http://www.esem-conferences.org/2008/
http://www.esem-conferences.org/2008/

AU J.T. 18(1): 36-47 (Jul. 2014)

Review Article 46

Appendix

Table A-1. Cost factor/driver parameters for use in effort estimation.

Factor Measurement Level Description Value

Effort
Adjustment
Factor (EAF)

Product of cost drivers that do
not use average value

a *
(KSLOC)

b
 *

EAF

SLOC/1000 a=2.94,
b=0.91+(Ʃscale
factors/100) [§]

Scale PREC - precedentedness Highest Extremely familiar 0.00

Very high Very familiar 1.24

High Familiar 2.48

Average Somewhat familiar 3.72

Low Inexperienced but slightly
understand

4.96

Very low No experience 6.20

FLEX - development flexibility Highest Meet requirements 0.00

Very high Meet some requirements 1.01

High Consistent 2.03

Average Somewhat consistent 3.04

Low Slightly consistent 4.05

RESL - architecture/risk
resolution

Highest Good planning 0.00

Very high N/A 1.41

High N/A 2.83

Average N/A 4.24

Low N/A 5.65

Very low No planning 7.07

TEAM - team cohesion Highest Excellent communication 0.00

Very high Very good communication 1.10

High Good communication 2.19

Average Normal communication 3.29

Low Little communication 4.38

Very low Very little communication 5.48

PMAT - process maturity Highest Capability Maturity Model
Integration (CMMI) 5

0.00

Very high CMMI 4 1.56

High CMMI 3 3.12

Average CMMI 2 4.68

Low CMMI 1 6.24

Product RELY - required reliability Very high Risky of life 1.26

High Big financial loss 1.10

Average Waste time to recover data 1.00

Low Delay in data recovery 0.92

Very low Some inconvenience 0.82

DATA - database size
(measured in bytes/SLOC)

Very high Over 1,000 1.28

High 100 < x < 1000 1.14

Average 10 < x < 100 1.00

Low Less than 10 0.90

CPLX - product complexity
(control, computation, GUI)

Very high Recursion, interrupt, 2D/3D,
multimedia

1.34

High Nested loops, widgets,
multimedia

1.17

Average Standard code and functions,
simple widgets

1.00

Low Moderate code and functions 0.87

Very low Simple code and functions 0.73

RUSE - required reusability Highest Reused with different
application programs

1.24

Very high Reused with similar
application programs

1.15

AU J.T. 18(1): 36-47 (Jul. 2014)

Review Article 47

High Reused with same
application but different
project

1.07

Average Reused in different modules
of the same project

1.00

Low Not reusable 0.95

DOCU - documentation match
to life cycle needs

Very high Extremely important 1.23

High Very important 1.11

Average Appropriate 1.00

Low Incomplete 0.91

Very low Very few 0.81

Platform TIME - execution time
constraint

Very high 85% 1.29

High 70% 1.11

Average <= 50% 1.00

STOR - main storage constraint Very high 85% 1.17

High 70% 1.05

Average <= 50% 1.00

PVOL - platform volatility Very high N/A 1.30

High Change every 2 months 1.15

Average Change every 6 months 1.00

Low Change every 12 months 0.87

Personnel ACAP - analyst capability Very high 90
th
 percentile 0.71

High 75
th
 percentile 0.85

Average 55
th
 percentile 1.00

Low 35
th
 percentile 1.19

Very low 15
th
 percentile 1.42

APEX - application experience Very high 6 years 0.81

High 3 years 0.88

Average 1 year 1.00

Low 6 months 1.10

Very low <= 2 months 1.22

PCAP - programmer capability Very high 90
th
 percentile 0.76

High 75
th
 percentile 0.88

Average 55
th
 percentile 1.00

Low 35
th
 percentile 1.15

Very low 15
th
 percentile 1.34

PLEX - platform experience Very high 6 years 0.85

High 3 years 0.91

Average 1 year 1.00

Low 6 months 1.09

Very low <= 2 months 1.19

LTEX - language and tool
experience

Very high 6 years 0.84

High 3 years 0.91

Average 1 year 1.00

Low 6 months 1.09

Very low <= 2 months 1.20

PCON - personnel continuity Very high 3% 0.81

High 6% 0.90

Average 12% 1.00

Low 24% 1.12

Very low 48% 1.29

[§] For no scale factor, use b = 1.0997.
Source: COCOMO II (2000).

