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Abstract 
 

This article explores a number of existing project cost estimation techniques to 

investigate how the estimation can be done in a more accurate and effective manner. 

The survey looks into various estimation models that utilize many theoretical techniques 

such as statistics, fuzzy logic, case-based reasoning, analogies, and neural networks. As 

the essence of conventional estimation inaccuracy lies in life cycle cost drivers that are 

unsuitable to be applied across the project life cycle, this study introduces a phase-wise 

estimation technique that posits some overhead and latency costs. Performance 

evaluation methods of the underlying phase-wise principle are also presented. 

Contributions of this phase-wise approach will improve the estimation accuracy owing 

to less latency cost and increase the project visibility which in turn helps the project 

managers better scrutinize and administer project activities. 

Keywords: Phase-wise effort estimation, fine-grained estimation, cost driver, 

overhead cost, latency cost. 

 

1. Introduction 
 

Software project cost estimation has 

plagued the software industry since the early 

years of software engineering. From the call for 

bidding to closing of project, the success and 

failure are attributed to how well the project is 

managed to keep everything in perspective, in 

particular, not exceeding the budget. Many 

projects ended with bad notes. The culprit lies 

in the root cause of cost estimation which is 

primarily derived from effort estimation. In a 

typical project management process, the fact 

that the project life cycle (LC) spans over a 

long period of time makes it hard to accurately 

estimate the cost. Myriad of unanticipated risks 

and uncertainties, not to mention the essence 

and accidents of software engineering (Brooks 

1987) and the metrics of software complexity 

(Yu and Zhou 2010), often cause under- or 

over-estimation that leads to project loss and 

termination. A couple of compelling questions 

that project managers often ask themselves are 

what to measure and how to accurately 

measure it. Experience tells us that both project 

effort and metrics are means to the solutions of 

the above questions. Unfortunately, the answer 

to the first question cannot be precisely and 

directly determined in advance so that planning 

of the project can be carried out systematically. 

In the meantime, the attempt to answer the 

second question calls for some forms of cost 

estimation modeling in order to arrive at an 

educated guess that furnishes necessary and 

pertinent information to plan the project. The 

conventional state-of-the-practice usually 

employs classical or established project LC 

models for effort estimation such as waterfall 

model, spiral model, SLIM model/Putnam 

model (Putnam 1978), COnstructive COst 

MOdel (COCOMO 81 (Boehm 1981) and 

COCOMO II (Boehm et al. 2000), Walston-

Felix model (Walston and Felix 1977), Bailey-

Basili model (Bailey and Basili 1981), 

Albrecht-Gaffney model (Albrecht and 

Gaffney 1983), Kemerer empirical model 

(Kemerer 1987), and Matson, Barrett and 

Mellichamp model (Matson et al. 1994). These 

models culminate in practical cost estimation 

based on well-defined software metrics, 

namely, lines of code (LOC), function point 

(FP) (Albrecht 1979), use case point (UCP) 

(Karner 1993), application point (AP) (Boehm 

et al. 2000), delivered source instructions 
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(DSI), unadjusted use case point (UUCP), etc. 

All of these approaches use the project 

lifecycle in the estimation process. The results 

unfortunately yield a number of estimation 

errors such as phase overhead and phase-

transition overhead. These cost factors 

hereafter will be referred to as latency 

overheads. The above undertakings are still far 

from gaining accurate estimation. The 

measurement accuracy is still a subject to 

validation that involves a wide array of 

techniques. Research approaches are underway 

to attain accurate effort estimation, for 

instance, statistical inferences, parametric 

modeling, knowledge-based modeling, case-

based reasoning, fuzzy logic, neural networks, 

and analogies (Shepperd and Schofield 1997; 

Li et al. 2007). The question is how well the 

methods proposed by these models perform as 

far as the measurement error from the data sets 

and the comparative performance statistics with 

other techniques are concerned. 

This paper surveys alternate approaches 

on project cost estimation based on current and 

emerging research endeavors. The survey 

encompasses various research attempts and 

emerging viewpoints that propose a breakdown 

of the project LC in order to perform fine-

grained estimation at phase level. As such, the 

total project effort can be determined in a more 

accurate manner. The pros and cons of these 

approaches and viewpoints will be applicable 

to actual project management and remain to be 

validated during project implementation. 

This paper is organized as follows. 

Section 2 recounts some principal building 

blocks that are applied in many studies. Section 

3 describes phase-wise estimation approaches 

that apply to the conventional project LC. 

Suggestions, prospects and future directions, 

along with some final thoughts, are given in the 

Conclusion. 

 

2. Literature Review 
 

There have been a number of research 

endeavors to investigate project effort 

estimation (Nasir 2006). A number of models, 

techniques, tools, and metrics are used by the 

principal investigators to improve the 

measurement accuracy of the estimation based 

on the most predominant cost driver, that is, 

project size. The introduction of machine 

learning has brought the researches in the area 

to a new level. Integrated techniques, multi-

methods, and extensive measurement schemes 

are being applied. Table 1 depicts a short 

chronological list of such research works. 

 

Table 1. A chronological review of effort estimation research works. 

Author(s) (Year) Primary focus Approaches Evaluation 

Kocaguneli et al. (2012) Ensemble Multimethods/solo method MAR, MMRE, MdMRE, 
MMER, PRED(25), 
MBRE, MIBRE 

Dejaeger et al. (2012) Data mining OLS, OLS+log, OLS+BC, 
Robust regression, Ridge 
regression, Least median 
squares, MARS, CART, 
Model tree, MLP NN, RBFN, 
CBR, LS+SVM 

MdMRE, PRED(25), 
Spearman’s rank 
correlation 

Port and Korte (2008) Model evaluation Models MMRE, PRED 

Yang et al. (2008) Phase distribution Models KSLOC 

Li et al. (2007) Analogy SIM MMRE, PRED(25) 

Matson et al. (1994) Function point Models MRE 

Kemerer (1987) Empirical model KSLOC MRE 

Albrecht and Gaffney 
(1983) 

Function point, 
source lines of code 

FP, KSLOC MRE 

Boehm (1981) / Boehm 
et al. (2000) 

COCOMO KDSI, KSLOC LOC 

Albrecht (1979) Function point FP UFP 

Putnam (1978) SLIM Norden/Rayleigh Regression 
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As software becomes intertwined in 

every facet of our lives, its application has been 

internationally accepted and used. The needs 

for standardizing its deliverables and 

development process are key factors to 

software products. Typical acclaimed standards 

and working groups (WGs) are: 

 16326 WG - Information Technology - 

Software Engineering - Software 

Project Management Working Group, 

Institute of Electrical and Electronics 

Engineers (IEEE); 

 European Research Consortium for 

Informatics and Mathematics (ERCIM) 

Working Group Software Evolution; 

 Project Management Institute (PMI) 

and Project Management Body of 

Knowledge (PMBOK
®
); 

 International Organization for 

Standardization (ISO)/ International 

Electrotechnical Commission (IEC) 

14143 [six parts] Information 

Technology - Software Measurement - 

Functional Size Measurement; 

 ISO/IEC 19761:2011 Software 

Engineering - Common Software 

Measurement International Consortium 

(COSMIC): A Functional Size 

Measurement Method; 

 ISO/IEC 20926:2009 Software and 

Systems Engineering - Software 

Measurement - International Function 

Point Users Group (IFPUG) Functional 

Size Measurement Method; 

 ISO/IEC 24570:2005 Software 

Engineering - Netherlands Software 

Metrics users Association (NESMA) 

Functional Size Measurement Method 

Version 2.1 - Definitions and Counting 

Guidelines for the Application of 

Function Point Analysis; and 

 ISO/IEC 20968:2002 Software 

engineering - Mark-II Function Point 

Analysis - Counting Practices Manual. 
 

Extensive as they are, the above attempts 

are based on the wide span of the project LC 

that encompasses various unscrupulous 

activities of the team. Some emerging 

viewpoints on effort estimation have gradually 

been investigated to unveil latency overheads. 

The empirical findings usually are inapplicable 

for accurate estimation purposes and the efforts 

are expended to focus on specific areas of 

application. User groups such as IFPUG and 

ISBSG (International Software Benchmarking 

Standards Group) are examples of domain 

specific estimation. The project managers must 

decide what data are to be collected to suit the 

applicable domain. For example, if the project 

managers decide to adopt the Constructive Cost 

Model (COCOMO), they have to predict the 

equivalent LOC for all upstream phases, i.e., 

requirements, planning, and design. 

Yang et al. (2008) proposed a phase 

distribution of the software development effort 

showing where the workload is concentrated. 

MacDonell and Shepperd (2003) proposed the 

use of a completed project to predict the effort 

needed for subsequent activities. Jodpimai et 

al. (2010) explored the interrelationship among 

different dimensions of projects. The inherent 

characteristics of some activities are too 

subjective to be measured either by overall or 

discrete elements, thereby rendering inaccurate 

estimation. Thus, breaking up in phases may 

involve activities that cannot be directly 

measured while traditional LC estimation 

averages out such deficits in terms of an overall 

figure. On the other hand, the measureable ones 

often yield different project data based on 

different models, metrics, and cost drivers. A 

proposed novel framework on phase-wise 

estimation breakdown in the conventional LC 

model will be elucidated in the sections that 

follow. 

 

3. Phase-wise Approach in the 

Conventional Lifecycle Model 
 

There are many factors that must be 

taken into account when selecting an 

estimation technique suitable for a given 

project. The most important one is the 

designated project LC model whose 

applicability depends primarily on several 

project characteristics and dependencies. The 

characteristics encompass attributes such as 

complexity, development paradigm (object-

oriented, functional, agile) and mode (organic, 

semi-detached, embedded), while the 

dependencies include size, technology and 
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metrics. In this survey, a classical project cost 

estimation based on COCOMO II is employed 

to demonstrate the combination of cost factors 

involved in the estimation. Table A-1 in the 

Appendix shows several necessary parameters 

for estimation. However, the number of 

parameters has been a formidable obstacle to 

accurate effort estimation after project 

inception. Several recent research findings 

(Kocaguneli et al. 2012; Dejaeger et al. 2012) 

advocate an ensemble of multiple estimation 

methods taking joint attributes into account. 

Kocaguneli et al. (2012) contended that there 

exist best combinations of methods for effort 

estimation. Nonetheless, the findings 

encompassed too many features to estimate, 

thereby the prediction accuracy had to be 

evaluated with more stringent criteria with the 

help of error evaluators such as mean 

magnitude of relative error (MMRE), 

percentage of relative error deviation (PRED) 

(Port and Korte 2008; Foss et al. 2003), etc. As 

mentioned earlier, most approaches deal with 

overall numbers so that the underlying 

estimation techniques cannot be generalized 

from empirical findings to production. The fact 

that different projects possess their own 

process variations renders different project 

effort estimations. This affects the accuracy of 

the conventional LC estimation model. The 

main deviation of the phase-wise approach is in 

phase dependent cost drivers that differentiate 

it from the conventional estimation. In the 

conventional approach, same constituent cost 

drivers are used to estimate the entire LC effort 

and the corresponding project cost. In contrast, 

the phase-wise approach utilizes selective cost 

drivers depending on phase requirements, 

nature of work, and deliverables. For instance, 

the project size is unarguably the principal 

estimator that is used throughout the entire 

project LC. If the project is broken down into a 

fine grain of measures on a phase basis, the 

project size may no longer be the appropriate 

cost estimator of the feasibility study and 

requirement analysis phases. This technique is 

essential and attributive in the establishment of 

the proposed phase-wise estimation. The 

following breakdown as shown in Fig. 1 

elucidates a typical workflow of the phase-wise 

estimation. 

 

3.1 Data 

collection

3.4 Cross 

validation

Evaluate 

model

Select best 

K

3.5 Feature 

selection

Remove 

redundant 

features

3.7 Test 

model

End of K 

folds?

3.3 Data 

normalization

3.2 missing 

valuse and 

outliers

3.6 create model 

from selected 

features  
 

Fig. 1. Phase-wise effort estimation flow. 

 

3.1 Data Collection 

 

The proposed novel phase-wise approach 

will utilize the conventional waterfall model 

where each phase is well defined and known by 

all software developers. Due to the 

unprecedented phase-wise effort estimation 

approach, industrial data, especially existing 

standard benchmarking archives such as 

COCOMO81, NASA93, Desharnais, USP05, 

MAXWELL, etc., were available (PROMISE 

2014) in overall LC figures. This survey will 

explore how the proposed novel approach can 

be put to production use. 

The process begins by collecting data of 

each phase. The uppercase phases, i.e., 

requirements, specifications and design, will 

employ functional size measurement (Gencel 

and Demirors 2008) and the like as techniques 

for effort estimation. 

The lowercase phases, on the other hand, 

can incorporate LOC metrics as additional 

details are available for fine-grained 

estimation. This sizing scheme may, at the first 

glance, appear to be a mixture of FP and LOC. 

Fortunately, the former metric can be converted 

to the latter via backfiring (Jones 1995). 

Table 2 depicts a typical series of 

activities during the course of project 

execution. The information can then be used to 

estimate the phase-wise effort. The overall 

project figure is obtained from the sum of 

constituent phases. As such, any “latency 

overhead” will be uncovered on an individual 

phase basis to yield fine-grained effort 

estimation. 
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Table 2. Project phase-wise activities and metrics. 

Activity Input Output Estimation metrics 

Software 
Requirements 
Specification (SRS) 

No. of team members Functionality FP 

Design No. of requirements/member Functional model FP 

Coding Design document Code LOC 

Testing No. of reworks No. of errors/module LOC 

Implementation No. of transactions from production code DSI LOC 

 

3.2 Missing Value and Outlier 

 

This step is designed to serve as an early 

data correction exercised immediately after 

data collection. Tsunoda et al. (2011) exploited 

such early warnings of two problems, namely, 

missing value and outlier detection. The former 

is an inherent phenomenon in project 

management where numerous small activities 

are accounted for such as color change of status 

bar, alternate display of normal time to military 

time, or renaming of a counter variable to make 

it more meaningful, etc. The efforts spent on 

corrections are insignificant to be recorded but 

appear on requests for change or maintenance 

reports. The latter, on the contrary, result from 

exceptional situations where unusually high or 

low values are recorded, for example heavy fire 

damage in the data center that caused 

considerable recovery effort and project delay, 

or the arrival of a new and highly efficient 

integrated development environment (IDE) tool 

that helped speed up the development time in 

considerably less effort, yielding lower actual 

effort spent than already estimated. 

One of the most popular and effective 

techniques to handle missing values is the k-

nearest neighbor (k-NN) imputation (Keller et 

al. 1985). It uses k data points from the closest 

proximity of the missing value position to 

interpolate the most likely value. This 

imputation might incur some errors if the 

actual values were not missing. The use of 

same feature value from other projects permits 

cross validation that fills in the estimation of 

the missing value to yield more accurate 

results. This technique will be explained in 

subsequent steps. 

The measuring error is computed as the 

Euclidean distance between the project having 

missing values and the ones without. A small 

value of the average of N measurements 

signifies accurate prediction of missing values. 

Outlier detection can be typically handled 

by examining the kurtosis and skewness of the 

data distribution. A normality test is set up to 

be the null hypothesis based on z-score to 

determine if there are possibilities that said null 

hypothesis is accepted, i.e., p-value < 0.001. 

On the contrary, if the null-hypothesis is 

rejected, the highest value is treated as the 

outlier and is discarded. This process is 

repeated until all outliers are removed. 

 

3.3 Data Normalization 

 

The above two steps merely acquire input 

data from various sources which could be of 

different ranges and magnitudes. A standard 

technique to linearly scale data of different 

ranges to the same scale, yet still preserve the 

relationship with the original value, is carried 

out by Eq. (1) as follows: 

 

 
 

  minminmax

minmax

min ˆˆˆˆ xxx
xx

xx
x 




 , (1) 

 

where x̂  denotes the reference range, while x 

denotes the individual range. 

 

3.4 Cross-Validation 

 

In a typical experiment, the data so 

collected are divided into two non-overlapping 

sets, that is, a training set and a test set. The 

former is used in various parameter 

adjustments during the model creation process, 

whereas the latter is held out for the model 

validation process. There are several 

techniques available for cross validation 

purposes. Two popular ones to be introduced 

are the N-fold cross validation and leave-one-
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out cross validation techniques. In N-fold cross 

validation, training data are randomly 

partitioned into N subgroups. One group is 

used as the test set and the rest are training sets. 

This process is repeated N times. The leave-

one-out approach exhaustively uses one data 

point at a time to test data and leave the rest of 

the data to be the trained set. This approach is 

very expensive and often used in a small 

number of data points as opposed to the N-fold 

technique that requires more data points to 

support the random rotation process. 

 

3.5 Feature Selection 

 

This is perhaps the most important 

activity of project cost estimation. Since all 

participating cost factors in the estimation 

process are features being selected from the 

cost model, many existing estimation 

techniques utilize several cost factors as 

estimation parameters. For example, the 

COCOMO model (Boehm et al. 2000) uses 17 

cost drivers in the estimation process. Jodpimai 

et al. (2010) found that only a handful of cost 

drivers were effective factors that could derive 

an estimation as accurate as the comparative 

models without employing the full-fledged 

parameter set. Moreover, fewer cost drivers 

translated into faster computation time. The 

findings revealed some interesting 

consequences, e.g., certain features are vital 

cost drivers that could yield accurate 

estimation. 

The process of acquiring good selected 

features is straightforward. The first step is to 

eliminate independent features that do not 

contribute or affect the project effort 

estimation. The next step is to reduce all 

redundant features that are less relevant to the 

project effort estimation. This is done by means 

of Pearson’s correlation. Features that result in 

a low value will be less relevant and thus 

eliminated. Finally, only those features that are 

related to effort estimation in the form of a 

mathematical function will be retained 

(Jodpimai et al. 2010). 

There are a number of models that can be 

used in the feature selection process, ranging 

from conventional COCOMO, rational unified 

process (RUP), statistical, and neural network 

models. The basis for effort estimation must 

rest on the proper use of these selected features 

in the estimation process, thereby accurate 

estimation results can be obtained. Table 3 

depicts typical phase-wise features 

participating in cost estimation. 

 

Table 3. Common phase-wise costing features. 

Group Feature Phase Attribute/activity 

Uppercase Software complexity System analysis - Overview analysis 

System design - Documentation 

Analyst capability Architectural design - Design overview 

Detailed design - I/O design 
- Data/class design 

Coding - Program/module structure 

Lowercase Execution time Testing - Programming 
- Unit and integration testing 

Main storage Production - Installation 
- Use/implement 

Programmer capability Coding - Syntactic and logical details 

 

3.6 Performance Evaluation 

 

Some popular performance evaluation 

methods and their corresponding effort 

estimation metrics collected in this survey are 

summarized in Table 4. Each method has its 

own applicability to measure the relationship 

between actual and predicted estimation results 

based on the set of selected features. This in 

turn yields accuracy of the estimation model 

being employed. 
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Table 4. Common methods/metrics for performance evaluation. 

Metric Name Reference Remark 

MRE Magnitude of Relative Error Tsunoda et 
al. (2011) 

 |y
’
i - yi|/yi 

BRE Balanced Relative Error Kitchenham 
et al. 

(2001) 
 |y

’
i - yi|/min(y

’
i, yi) 

MER Magnitude of Error Relative Foss et al. 
(2003) 

 |y
’
i - yi|/y

’
i 

MMRE Mean Magnitude of Relative Error Tsunoda et 
al. (2011)  

n

i
MRE

n 1

1
 

PRED(l) Prediction at Level l Tsunoda et 
al. (2011)   



 n

i

i

otherwise

lMREif

n 1 0

 11
 

MdMRE Median Magnitude of Relative 
Error 

Friedman 
(1937) 

 median (MRE) 

Pearson’s correlation Relation between two sets of data 
(estimated and actual) 

Abran and 
Robillard 
(1996) YX

YX

YX




),cov(
,   

Friedman test Non-parametric hypothesis test as 
an alternative to one-way ANOVA 

Friedman 
(1937)   


n

i

k

j ijr
nk

r
1 1

1
 

Wilcoxon matched pairs 
signed-rank test 

Non-parametric as an alternative 
to parametric paired simple t-test 

Rédei 
(2008) ii xx ,1,2  , sgn( ii xx ,1,2  ) 

Kruskal-Wallis analysis 
of variance (ANOVA) test 

Non-parametric as alternative one-
way ANOVA > 3 samples 

Vries and 
Chandon 

(2007) 
K=(N-1)

 

  



 






g

i

n

j ij

g

i ii

i

rr

rrn

1 1

2

1

2

  

 

Model evaluation is usually carried out 

by comparing the difference between predicted 

(estimated) effort y’i and actual effort yi. The 

effort is made on a phase basis using related 

factors. For example, factors used in 

requirements and specification effort 

estimation involve FP to deal with both 

functional and non-functional requirements. As 

project requirements become materialized, size 

estimation via LOC can be carried out more 

accurately. Some metrics are criticized for 

penalizing over-estimation (such as MRE), 

while others are just the opposite (such as BRE 

and MER). Two commonly used metrics are 

MMRE and PRED (0.25) since they are 

independent of units of measure and easy to 

use. However, they are found to give 

inconsistent results depending on the properties 

of the distribution of y’i/yi. Occasionally, 

MdMRE is used to solve the outlier problem as 

MMRE cannot properly handle it. At any rate, 

these two metrics will be adopted. 

Since this survey also introduces a new 

approach using phase-wise estimation to 

predict fine-grained individual phase level cost 

as opposed to the conventional overall LC 

estimation, the metrics used are confined to the 

same ones in order to keep the same working 

parameters so that the results so obtained will 

be comparable with those of the conventional 

statistical techniques (Kitchenham et al. 2001). 

 

4. Future Directions 
 

This survey sets out to explore phase-

wise project cost estimation, aiming at more 

accurate results than using the traditional LC 

approach. The survey unveils some noteworthy 

results that have potential benefits to software 

project management. 

Modern software products are short-

lived. Their development process cannot fit 

into the traditional LC style, let alone analysis 

and management. The proposed phase-wise 

approach could open a new exploitation of 

well-entrenched and practical techniques that 

have already been put to use. This in turn 

becomes an adoption of proven techniques 

such as program slicing to new software 

development techniques or management 

approaches. The phase-wise analysis can serve 
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as a scrutinized investigation provided that one 

can find appropriate metrics and analysis 

technique to handle it. 

The essence of this phase-wise estimation 

survey can be summarized as follows: 

1) The phase-wise measurement is an inherent 

rather than accidental characteristic of 

project management. The nature of the 

software development process irrespective 

of the underlying model lends itself to 

collecting data which are readily available. 

What has not been done is the breakdown of 

the activity structure. In addition, the 

difficulty of data collection is seen as 

disruptive and infeasible as many tasks are 

operationally intertwined. This makes it 

hard to succinctly separate. 

2) The fact that a “phase” has been ingrained in 

software engineering and has become a 

stigma of software project management 

makes it unfit to new software project 

development paradigms such as agile and 

aspect-oriented approaches. A closer look 

into this survey reveals that this phase can 

be generalized to fit the underlying 

development process. For example, for an 

input screen storyboard of an agile 

development setting, the deliverables can be 

viewed as one UI work product of the input-

output phase which is appropriately 

measured as phase-wise results. 

3) Existing available tools, techniques, and 

metrics can be tailored to suit the phase 

level without having to reinvent the wheel. 

For example, project management tools can 

easily be set to monitor the phase-wise 

measurement. 

4) New development paradigms, technologies, 

and management techniques are required for 

the success of phase-wise measurement. As 

such, training to work with new procedures 

and assessments is inevitable. Proper 

planning must be carried out to set up the 

necessary programs for all personnel 

involved. Moreover, the activity measure 

will be broken down to fine man-hour levels 

to handle a smaller scale of required items. 

The current work in progress using a 

collection of industrial projects looks quite 

promising as the number of cost factors is 

reduced considerably without sacrificing 

estimation accuracy. 

 

5. Conclusion 
 

This survey examines a number of 

existing software project cost estimation 

techniques and metrics from the project life 

cycle standpoint. All research estimation works 

are evaluated using well-established 

measurement statistics. At any rate, the 

inherent estimation error still persists. A novel 

phase-wise approach is proposed as a 

preliminary investigation to explore the 

intricacy of project effort measurement so as to 

arrive at more accurate estimation. A number 

of benefits can be drawn from such an 

elaborative approach: 

1) One of the most important software project 

management aspects is project visibility. 

The project managers will be able to 

monitor any activities or actions that have 

gone awry in each phase and transition 

between phases rather than prolonging them 

until a catastrophic failure takes place. 

2) More appropriate performance measures and 

metrics can be applied in each designated 

phase as opposed to using the traditional 

“one size fits all” metric on the entire LC. 

3) Fewer cost drivers are used. This means 

faster and more accurate estimation than the 

traditional LC approach as the cumulative 

errors grow from being injected by too 

many cost drivers. 

4) The phase-wise activity breakdown offers 

reduction or elimination of latent and 

transition costs with better cost handling. 

The project managers will be able to see the 

hidden problems, effort duplication, and 

overhead incurred within and between 

phases. 

This precursory survey furnishes a 

preliminary overview of fine-grained 

measurements in project cost estimation. The 

project managers will have less of a burden on 

cost estimation and more time to monitor 

relevant project activities. 
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Appendix 
 
Table A-1. Cost factor/driver parameters for use in effort estimation. 

Factor Measurement Level Description Value 

Effort 
Adjustment 
Factor (EAF) 

Product of cost drivers that do 
not use average value 

a * 
(KSLOC)

b
 * 

EAF 

SLOC/1000 a=2.94, 
b=0.91+(Ʃscale 
factors/100) [§] 

Scale PREC - precedentedness Highest Extremely familiar 0.00 

Very high Very familiar 1.24 

High Familiar 2.48 

Average Somewhat familiar 3.72 

Low Inexperienced but slightly 
understand 

4.96 

Very low No experience 6.20 

FLEX - development flexibility Highest Meet requirements 0.00 

Very high Meet some requirements 1.01 

High Consistent 2.03 

Average Somewhat consistent 3.04 

Low Slightly consistent 4.05 

RESL - architecture/risk 
resolution 

Highest Good planning 0.00 

Very high N/A 1.41 

High N/A 2.83 

Average N/A 4.24 

Low N/A 5.65 

Very low No planning 7.07 

TEAM - team cohesion Highest Excellent communication 0.00 

Very high Very good communication 1.10 

High Good communication 2.19 

Average Normal communication 3.29 

Low Little communication 4.38 

Very low Very little communication 5.48 

PMAT - process maturity Highest Capability Maturity Model 
Integration (CMMI) 5 

0.00 

Very high CMMI 4 1.56 

High CMMI 3 3.12 

Average CMMI 2 4.68 

Low CMMI 1 6.24 

Product RELY - required reliability Very high Risky of life 1.26 

High Big financial loss 1.10 

Average Waste time to recover data 1.00 

Low Delay in data recovery 0.92 

Very low Some inconvenience 0.82 

DATA - database size 
(measured in bytes/SLOC) 

Very high Over 1,000 1.28 

High 100 < x < 1000 1.14 

Average 10 < x < 100 1.00 

Low Less than 10 0.90 

CPLX - product complexity 
(control, computation, GUI) 

Very high Recursion, interrupt, 2D/3D, 
multimedia 

1.34 

High Nested loops, widgets, 
multimedia 

1.17 

Average Standard code and functions, 
simple widgets 

1.00 

Low Moderate code and functions 0.87 

Very low Simple code and functions 0.73 

RUSE - required reusability Highest Reused with different 
application programs 

1.24 

Very high Reused with similar 
application programs 

1.15 
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High Reused with same 
application but different 
project 

1.07 

Average Reused in different modules 
of the same project 

1.00 

Low Not reusable 0.95 

DOCU - documentation match 
to life cycle needs 

Very high Extremely important 1.23 

High Very important 1.11 

Average Appropriate 1.00 

Low Incomplete 0.91 

Very low Very few 0.81 

Platform TIME - execution time 
constraint 

Very high 85% 1.29 

High 70% 1.11 

Average <= 50% 1.00 

STOR - main storage constraint Very high 85% 1.17 

High 70% 1.05 

Average <= 50% 1.00 

PVOL - platform volatility Very high N/A 1.30 

High Change every 2 months 1.15 

Average Change every 6 months 1.00 

Low Change every 12 months 0.87 

Personnel ACAP - analyst capability Very high 90
th
 percentile 0.71 

High 75
th
 percentile 0.85 

Average 55
th
 percentile 1.00 

Low 35
th
 percentile 1.19 

Very low 15
th
 percentile 1.42 

APEX - application experience Very high 6 years 0.81 

High 3 years 0.88 

Average 1 year 1.00 

Low 6 months 1.10 

Very low <= 2 months 1.22 

PCAP - programmer capability Very high 90
th
 percentile 0.76 

High 75
th
 percentile 0.88 

Average 55
th
 percentile 1.00 

Low 35
th
 percentile 1.15 

Very low 15
th
 percentile 1.34 

PLEX - platform experience Very high 6 years 0.85 

High 3 years 0.91 

Average 1 year 1.00 

Low 6 months 1.09 

Very low <= 2 months 1.19 

LTEX - language and tool 
experience 

Very high 6 years 0.84 

High 3 years 0.91 

Average 1 year 1.00 

Low 6 months 1.09 

Very low <= 2 months 1.20 

PCON - personnel continuity Very high 3% 0.81 

High 6% 0.90 

Average 12% 1.00 

Low 24% 1.12 

Very low 48% 1.29 

[§] For no scale factor, use b = 1.0997. 
Source: COCOMO II (2000). 


