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Abstract 
 

We present a 9-degree of freedom analysis of a 2D truck with the assumption that 

the coefficient of damping can be modelled as proportion to the stiffness matrix. There 

are nine modes of vibrations observed. The modes of vibration show that the articulated 

vehicle un-sprung masses move in different phases relative to one another in the modes. 

A driving comfort measured by the impact response in the driver cabin for the selected 

stiffness matrix is only 1.32% relative to acceleration of gravity. The sinusoidal road 

profile gives an oscillating response in the trailer compartment which settles to a 

sinusoidal amplitude of 0.5
o
 from an initial 1.5

o
 amplitude, while the driver cabin 

oscillation is only 0.02
o
. This is a comfortable ride without consideration for seat 

ergonomics and the physiological effect of low frequency vibration and long time 

driving. 

 Keywords: Damping, vibration, coefficient of damping, stiffness matrix. 

 

Introduction 
 

A commercial truck has several 

sophisticated suspension systems aimed at 

providing smooth driving and comfort and 

protecting the machinery and the goods or 

equipment transported. There are a number of 

literatures which show interest of researchers in 

ride comfort (Hać 1985; Ikenaga et al. 2000; 

Jie et al. 2011; Fan et al. 2011). A review by 

Mabbott et al. (2001) suggests that low 

frequency vibration may be associated with 

driver fatigue.  

Programmers developing a computer 

based game or simulator application for vehicle 

driven on some road profile can make more 

realistic motion by understanding the dynamics 

and vibration modes of such vehicles but for a 

more realistic virtual reality simulator of a 

vehicle, a 3D model would provide better 

results. 
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Maeda et al. (2005), in the vehicle 

simulator validation research, noted that road 

design requires understanding vehicle response 

to road profile. 

 

2D Truck Model 
 

The representative 2D truck model of 

Fig. 1 is used in this analysis. To reduce the 

complexity of the system of equations, the 

damping coefficients are assumed to be linearly 

proportional to the stiffness by a factor of 

proportionality. 

Similar to the 4-dof (degree of freedom) 

simplification in Hedrick and Butsuen (1990), 

the system is modelled as shown in Fig. 2 

without the dampers. Also, the un-sprung 

masses are considered as rigid bodies. 

It is also assumed that the road excitation 

could be represented analytically. Other 

techniques are possible for representing a road 

profile, direct data measurement from the road 

or spectral density method as in the review by 

Jiang et al. (2001) but a simple sinusoidal 

representation of the form F = F e
- j  t

 is used 

here for simplicity. 
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The effects of friction and tyre pressure 

discussed by M’Sirdi et al. (2005) would only 

unnecessarily complicate the computation for 

this analysis and such effects are factored into 

the forcing functions: 

F1 = k5 y1,    (1) 

F2 = k6 y2, and    (2) 

F3 = k9 y3.    (3) 

The road profile is described in the form: 

yr = Asin(t – (2/)Xr)  (4) 

where: Xr is the wheel coordinate relative to the 

front wheel; t is the time;  is the angular 

frequency,  = 10.472 rad/s;   is the 

wavelength; and A = 0.1 m. 

Forces F1, F2 and F3 are the road 

excitations at the wheels of the articulated 

vehicle. The close wheels have been combined 

as single wheels for simplicity as shown in Fig. 

2. The three un-sprung masses are allowed to 

tilt about their individual centre of mass and 

can make vertical oscillations. The degrees of 

freedom (dof) are xj for the linear 

displacements and j ranges from 1 to 6; the 

angular dof are 1, 2, and 3. To ensure that 

the variables are not linearly dependent, the 

following variables are adopted and have been 

used in the motion equations: 

y1 = x2 + l32,  y5 = x2 – l62, 

y2 = x2 + l52,  y6 = x1 + l11, 

y3 = x2 – l42,  y7 = x1 – l21, 

y4 = x2 – l72,  y8 = x5 + l83, and 

y9 = x5 – l93. 

 
Fig. 1. A representative 2D truck model. 
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Fig. 2. Dynamic model of the truck system. 
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The solution method follows the 

Lagrange-d’Alembert’s principles. The 

equation of motion is of the form 

m x  +  k x  + k x = F.   (5) 

In forming the equations, the next 

equation form has been used: 

m x  + k x = F.    (6) 

where: m represents mass; k represents 

stiffness;  k is the damping coefficient;  is a 

factor of proportionality; and F is the excitation 

force. Figure 2 is used to resolve the sets of 

equations following. 

If the cabin has a mass m1 and moment of 

inertia I1, then the motion equation is: 

m1 x 1 + k1(y6 – y1) + k2(y7 – y3) = 0, 

m1 x 1 + x1(k1 + k2) – x2(k1 + k2)  

+ 1(k1l1 – k2l2) + 2(k2l4 – k1l3) = 0. 

(7) 

The trailer unit having mass m5 and 

moment of inertia I3 can be represented as: 

m5 x 5 + k7(y8 – y4) + k8(y9 – x6) = 0, 

m5 x 5 – x2k7 + x5(k7 + k8)  

– x6k8 + 2k7l7 + 3(k7l8 – k8l9) = 0. 

(8) 

The motion of the engine chassis, which 

has a combined mass of m2 and moment of 

inertia I2, is represented in Eq. (9): 

m2 x 2 + k3(y2 – x3) + k4(y5 – x4)  

– k1(y6 – y1) – k2(y7 – y3)  

– k7(y8 – y4) = 0, 

m2 x 2 – x1(k1 + k2)  

– x2(k1 + k2 + k3 + k4 + k7)  

– x3k3 – x4k4 – x5k7  

+ 1(–k1l1 + k2l2)  

+ 2(k3l5 – k4l6 + k1l3 – k2l4 – k7l7)   

– 3k7k8 = 0.   (9) 

The front wheel un-sprung mass m3 has 

road excitation F1. Its equation of motion is 

shown in Eq. (10): 

m3 x 3 + k5x3 – k3(y2 – x3) = F1, 

m3 x 3 – x2k3 + x3(k3 + k5) – 2k3l5 = F1. 

(10) 

Similarly, the rear wheel of the truck is 

has un-sprung mass m4, and excited with road 

excitation F2, its motion equation shown in Eq. 

(11): 

m4 x 4 + k6x4 – k4(y5 – x4) = F2, 

m4 x 4 – x2k4 + x4(k4 + k6) – 2k4l6 = F2. 

(11) 

For the trailer wheels with un-sprung 

mass m6, and road excitation F3, Equation (12) 

represents the motion: 

m6 x 6 + k9x6 – k8(y9 – x6) = F3, 

m6 x 6 – x5k8 + x6(k8 + k9) – 3k8l9 = F3. 

(12) 

Taking moments about the respective 

centre of mass of the three un-sprung masses 

give the next 3 sets of equations: 

I1 1 + x1(k1l1 – k2l2) + x2(–k1l1 + k2l2)  

+ 1(k1l1
2
 + k2l2

2
) – 2(k1l1l3 + k2l2l4) = 0, 

(13) 

I2 2 + x1(k2l4 – k1l3)   

+ x2(k3l5 – k2l4 – k7l7 – k4l6 + k1l3) 

– x3(k3l5) + x4(k4l6) + x5(k7l7) 

– 1(k2l2l4 + k1l1l3)  
+ 2(k3l5

2
 + k2l4

2
 + k7l7

2
 + k4l6

2
 + k1l3

2
)  

+ 3(k7l7l8) = 0, 

(14) 

I3 3 – x2(k7l8) + x5(k7l8 – k8l9) 

+ x6(k8l9) 

+ 2(k7l7l8) + 3(k7l8
2
 + k8l9

2
)= 0. 

     (15) 

 

Simulation Condition and Method 

The vehicle is assumed to be moving at a 

velocity of 60 km/hr and the road roughness is 

assumed to have a wavelength of 10 m, this 

represents a roughness of 10.47 rad/s. System 

response (Singiresu 2004) is obtained by 

solving the matrix of Eq. (17) below which is 

also expressed as the following  Eq. (16): 

x
M

K
x

M

C

M

F
x

][][][
  ,  (16) 

and solved using MATLAB built-in Runge-

Kunta ODE23 function, where: C represents 

the damping coefficient matrix; F is the forcing 

function matrix; and M represents the diagonal 

mass matrix. The dimensions and stiffness data 

have been adapted from Elmadany (1987) as 

shown in Table 1. 

The solution matrix in Eq. (17) has been 

formed using Eq. (5). 
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Table 1. Dimensions and stiffness data (Elmadany 1987). 

 Driver cabin Tractor (with 
engine) 

Trailer Un-sprung 
masses 

Dimensions 
(m) 

L1=1.9 
L2=1.2 
 

L3=1.22 
L4=1.25 
L5=1.20 
L6=2.10 
L7=2.08 

L8=5.42 
L9=3.11 

 

Mass 
(kg) 

M1=1,932 M2=4,508 M4=3,660 M3=360 
M5=1,450 
M6=1,450 

Stiffness 
kN/m 

K1=150 
K2=150 

K3=357 
K4=630 

K7=6,000 
K8=630 

K5=1,560 
K6=5,250 
K9=5,250 

Moments of 
inertia 
(kgm2) 

 I1=1017 I2=2373 I3=48,140 

Damping c  
 kNs/m  
(Calculated with 
1/3,500 factor) 

 C3=0.102 
C4=0.180 

C7=1.714 
C8=0.180 

C5=0.446 
C6=1.500 
C9=1.500 

 

Results 
 

The road excitation causes the vehicle to 

make linear deflections and angular tilting as 

shown in the following set of figures. 

 

Modes of Vibration 

There are 9 modes of vibration possible 

as shown in Fig. 3, the 7th, 8th, and 9th degrees 

of freedom are the angular tilts. The 

displacements were normalised with the 

maximum displacement. 

 

 

 

Fig. 3. Modes of vibration for vehicle. 

 

 

The Max_Mag and Min_Mag in Fig. 3 

represent the maximum and minimum 

magnitudes at the various modes of vibration. 

It also shows the phases of the degree of 

freedom in different modes relative to one 

another. 

 
Dynamic Displacements 

The vertical displacement of the vehicle 

is shown in Figs. 4 and 5. 

 

Angular Tilt 

The rotation or tilt of the compartments is 

shown in Fig. 6 and the driver cabin is shown 

in Fig. 7. 
 

 

Fig. 4. Driver cabin dynamic displacement. 
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Fig. 5. Displacement with time of the vehicle 
parts. 

 

 

Fig. 6. Compartmental rotations. 
 

 

Fig. 7. Rotation of the driver cabin. 

 

Driver Experience 

The comfort of the driver can be 

measured as a function of force experienced as 

a result of the maximum impact. For a 

sinusoidal forcing function, the maximum is 

experienced at maximum acceleration given 

by: 

a = 2
A.    (18) 

At the speed of 60 km/hr, the acceleration 

experienced is 1.32% g, where g = acceleration 

of gravity (9.80665 m/s
2
); a = circular motion 

acceleration; and A is the amplitude of the 

motion. 

 

Discussion 
 

The maximum displacement, as shown in 

Fig. 5, is experienced by the front wheel and 

similarly by the trailer rear wheel in the first 5 

seconds of impact on the rough road. The 

displacements do not go below 25 mm and not 

more than 35 mm over time.  

The displacement of the cabin 

compartment, where the driver seat is located, 

grows from rest to only about 1 mm within the 

first 60 seconds and stays within this range 

over time. During the first 20 seconds, the 

maximum tilt experienced is only about 0.05
o
 

and keeps oscillating at less than 0.02
o
, while 

the trailer compartment oscillates to a 

maximum value of 1.5
o
 before reaching a 

stabilised oscillation of about 0.5
o
 after 60 

seconds. The engine compartment experiences 

stability almost immediately at less than 0.5
o
 

and maximum amplitude of 12 mm. 

The driver experience is only 1.32% of g 

at the maximum, meaning that the driver 

experience as a result of driving the truck on 

the rough road is comfortable if measured as a 

result of impact and not the fatigue that can be 

experienced as a result of long time driving and 

low frequency vibrations. 

In this simulation, the road is 0.1 m 

rough in crest and the whole system response is 

about 35 mm at the wheels and even less than 2 

mm inside the compartments with less than 

1.5
o
, making it suitable for sensitive item 

transportation in a real case scenario. 

 

Conclusion 
 

The values of damping coefficients can 

be modelled as a function of the stiffness 

matrix to simplify the system of equations and 

to cater for the difficulty of measuring damping 

coefficients of a spring-mass system. Vehicle 

suspension designs (Fujishiro et al. 1987) may 

incorporate variable damping and this method 

can be used to approximate system response. A 

properly designed suspension system can 
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absorb significant amount of shock to provide 

driving comfort. Selective choice of the 

suspension system can give selective comfort 

at different compartments in an articulated 

vehicle. 
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Nomenclature 

Symbol Use 

j Complex number 

i An integer index 

I Moment of Inertia (kg·m2) 

k Stiffness (N/m) 

l Length (m) 

g Gravity (9.80665 m/s2) 

F Force (N) 

C Coefficient of damping (N·s/m) 

 
Greek symbols 

Symbol Meaning/Use 

 Angular frequency (rad/s) 

i
  Angular velocity (rad/s) 

i
  Angular acceleration (rad/s2) 

 

References 
 

ElMadany, M.M. 1987. Nonlinear ride analysis 

of heavy trucks. Computers and Structures 

25(1): 69-82. 

Fan, Z.P.; Zeng, H.; Yang, J.W.; and Li, J. 

2011. Study on decreasing vibration of high-

speed train semi-active suspension system. 

Advanced Materials Research 230-232: 

1,104-9. 

Fujishiro, T.; Takahashi, S.; and Kaneko, T. 

1987. Automotive suspension system with 

variable damping characteristics. United 

States Patent Office, US Patent 4,696,489, 

filed 13 January 1986, issued 29 September 

1987. 

Hać, A. 1985. Suspension optimization of a 2-

DOF vehicle model using a stochastic 

optimal control technique. Journal of Sound 

and Vibration 100(3): 343-57. 

Hedrick, J.K.; and Butsuen, T. 1990. Invariant 

properties of automotive suspensions. 

Proceedings of the Institution of Mechanical 

Engineers (IMechE), Part D: Journal of 

Automobile Engineering 204(1): 21-7. 

Ikenaga, S.; Lewis, F.L.; Campos, J.; and 

Davis, L. 2000. Active suspension control of 

ground vehicle based on a full-vehicle 

model. Proceedings of the 2000 American 

Control Conference, 28-30 June 2000, 

Chicago, IL, USA. Vol. 6, pp. 4,019-24. 

Jiang, Z.; Streit, D.A.; and El-Gindy, M. 2001. 

Heavy vehicle ride comfort: literature 

survey. International Journal of Heavy 

Vehicle Systems 8(3/4): 258-84. 

Jie, H.; Yikai, C. Chihang, Z.; Zhiguo, Q.; and 

Xiuhuan, R. 2011. Heavy truck suspension 

optimisation based on modified skyhook 

damping control. International Journal of 

Heavy Vehicle Systems 18(2): 161-78. 

M’Sirdi, N.K.; Rabhi, A.; Zbiri, N.; and 

Delanne, Y. 2005. Vehicle-road interaction 

modelling for estimation of contact forces. 

Vehicle System Dynamics 43(Supplement 

1): 403-11. 

Mabbot, N.; Foster, G.; and McPhee, B. 2001. 

Heavy Vehicle Seat Vibration and Driver 

Fatigue. Department of Transport and 

Regional Services, Australian Transport 

Safety Bureau, Canberra, Australia, Report 

No. CR 203. 

Maeda, C.; Kawamura, A.; Shirakawa, T.; 

Nakatsuji, T.; and Kumada, K. 2005. 

Reproducibility of the vehicle vertical 

motion by KIT driving simulator using the 

actual measurement data. Journal of the 

Eastern Asia Society for Transportation 

Studies 6: 2,734-46. 

Singiresu, S.R. 2004. Mechanical Vibrations. 

Pearson Education, Upper Saddle River, NJ, 

USA. 

 


