
AU J.T. 15(1): 8-16 (Jul. 2011)

Review Article 8

Tutorial of Motion Estimation Based on

Horn-Schunk Optical Flow Algorithm in MATLAB
®

Darun Kesrarat
1
 and Vorapoj Patanavijit

2

1
Department of Information Technology, Faculty of Science and Technology

2
 Department of Computer and Network Engineering, Faculty of Engineering

Assumption University, Bangkok, Thailand

E-mail: <darun@scitech.au.edu; patanavijit@yahoo.com>

Abstract

The Horn-Schunk algorithm (HS) is one of the classical algorithms in optical flow

due to its reasonable performance and simplicity of the algorithm. This article presents

in detail the process of the HS algorithm and its step by step coding in MATLAB
®
. The

HS algorithm is a technique used to identify the image velocity or motion vector based

on Spatial Temporal Gradient Technique which computes the image velocity from

spatiotemporal derivatives of image intensity. Firstly, the original estimated intensity

for gradient constraint on the image sequence is obtained by using the gradient

constraint with a global smoothness. Then, iterative equations are solved to minimize

the sum of the errors for the rate of change of image gradient intensity and obtain the

image velocity.

Keywords: Spatial Temporal Gradient Technique, gradient intensity, motion

vector, image velocity.

Introduction

Optical flow is a technique used for many

particular fields, such as motion estimation to

predict the motion vector of a moving object,

video compression and reconstruction for

reducing temporal redundancy present in frame

sequences and allowing a better compression of

video material, and image segmentation for

tracking a moving object. In conventional

predictive methods for motion estimation, the

difference between the current frame and the

predicted frame, based on a previous frame

(motion vector, or MV), is coded and

transmitted; then it is used to reconstruct a

higher resolution still image or video sequence

from a sequence of low resolution images in

achieving super-resolution (Kesrarat and

Patanavijit 2011). This article concentrates on a

classical optical flow algorithm, namely the

Horn-Schunck algorithm (HS) proposed by

Horn and Schunck (1981). The HS algorithms

are the most popular differential algorithms

which have been applied for many applications

and have been referenced for many

performance evaluation models. Barron, Fleet

and Beauchemin (BFB) adjusted the kernel

model for performance evaluation over HS

algorithms, but its focus is on the density of

velocity (Barron et al. 1994). This article

explains the motion estimation algorithm based

on the Horn-Schunk optical flow algorithm

(HS), which applies the kernel of BFB, and

also represents the algorithm step by step in

MATLAB
®
.

Horn-Schunk Algorithm (HS)

This algorithm is based on a differential

technique computed by using a gradient

constraint (brightness constancy) with a global

smoothness to obtain an estimated velocity

field (Horn and Schunk 1981). There are two

main processes for the implementation of the

HS algorithm. The first one is an estimation of

partial derivatives, and the second one is a

minimization of the sum of the errors by an

iterative process to present the final motion

vector.

AU J.T. 15(1): 8-16 (Jul. 2011)

Review Article 9

Estimation of classical partial derivatives
This section presents the estimation

process of the classical derivatives of image

intensity or brightness from the image

sequence. The brightness of each pixel is

constant along its motion trajectory in the

image sequence. The relationship in continuous

images sequence will be taken into account to

estimate the original intensity for a gradient

constraint. Let I(x,y,t) denote the gradient

intensity (brightness) of point (x,y) in the

images at time t. In each image sequence, Ix, Iy,

and It are computed for each pixel (see also

Figs. 1-2):

Ix = ¼ {Ix,y+1,t - Ix,y,t + Ix+1,y+1,t - Ix+1,y,t + Ix,y+1,t+1 -

Ix,y,t+1 + Ix+1,y+1,t+1 - Ix+1,y,t+1},

Iy = ¼{Ix+1,y,t - Ix,y,t +Ix+1,y+1,t - Ix,y+1,t +Ix+1,y,t+1 -

Ix,y,t+1 + Ix+1,y+1,t+1 - Ix,y+1,t+1},

It = ¼ {Ix,y,t+1 - Ix,y,t + Ix+1,y,t+1 - Ix+1,y,t + Ix,y+1,t+1 -

Ix,y+1,t + Ix+1,y+1,t+1 - Ix+1,y+1,t}.

 (1)

x

y

t+1

x, y

x+1, y

x, y+1

x+1, y+1

5 105

1850

10030

0 180

t

Ix = ((105 – 5) + (185 – 0) + (100 –3 0) + (180

– 0)) / 4 = 133.75
Iy = ((0 – 5) + (185 – 105) + (0 – 30) + (180 –

100)) / 4 = 31.25
It = ((30 – 5) + (0 – 0) + (100 – 105) + (180 –

185)) / 4 = 3.75

Fig. 1. The partial derivatives of image
brightness at point (x, y).

Estimation of partial derivatives on BFB

kernel
 Barron et al. (1994) proposed

performance evaluation over many algorithms

of optical flow and modification of some of the

variant variables. We focus on the kernel of

mask coefficient for gradient estimation which

is the core functional of the HS algorithms. The

gradient estimation kernel of the BFB model

uses 4-point central differences for

differentiation defined as (see also Figs. 3-7):

Ix = 1/12 {-1  Ix,y-2 + 8  Ix,y-1 + 0  Ix,y - 8 

Ix,y+1 + 1  Ix,y+2},

Iy = 1/12 {-1  Ix-2,y + 8  Ix-1,y + 0  Ix,y - 8 

Ix+1,y + 1  Ix+2,y},

It = 1/12 {-1  Ix,y,t-2 + 8  Ix,y,t-1 + 0  Ix,y,t - 8 

Ix,y,t+1 + 1  Ix,y,t+2}.

 (2)

It is known that in most situations of

motion estimation one may use only two

frames to calculate It as shown in Fig. 6. As a

result of using the BFB kernel, it presents more

stability of original gradient estimation than the

result of performance evaluation in Barron et al.

(1994).

% im1 is gray image sequence at time t

% im2 is gray image sequence at t+1

Ix = conv2(im1,0.25* [-1 1; -1

1],'same') + conv2(im2, 0.25*[-1 1; -1

1],'same');

Iy = conv2(im1, 0.25*[-1 -1; 1 1],

'same') + conv2(im2, 0.25*[-1 -1; 1

1], 'same');

It = conv2(im1, 0.25*ones(2),'same') +

conv2(im2, -0.25*ones(2),'same');

Fig. 2. MATLAB
®
 code for gradient estimation

with original partial derivatives.

1/12 -1 8 0 -8 1

Fig. 3. The kernel coefficient of BFB.

% im1 is gray image sequence at time t

% im2 is gray image sequence at t+1

Ix= conv2(im1,(1/12)*[-1 8 0 -8 1],

 'same');

Iy= conv2(im1,(1/12)*[-1 8 0 -8 1]',

 'same');

It = conv2(im1, ones(1),'same') +

 conv2(im2, -ones(1),'same');

% modify ft because there are only 2 frames

which are used for calculation

Fig. 4. MATLAB
®
 code for gradient estimation

with BFB kernel of 2-image sequence.

AU J.T. 15(1): 8-16 (Jul. 2011)

Review Article 10

x, y

x

y

-1 8 -8 10

Image

1/12

BFB Kernal

100

100

100

100

100

100

200

200

200 200

200

200

5

5

5

5

5 5

5

50

50 50

50 50

80

80

130

130 130

130

180

180

180

180

250

0

Ix(2,2) = (-1 x 200 + 8 x 5 + 0 x 250 – 8 x 100 +
1 x 80) / 12 = -73.33

Fig. 5. An illustration of gradient calculation for
Ix of BFB kernel coefficient.

x, y

y

-1

8

-8

1

0

Image

1/12

BFB Kernal

100

100

100

100

100

100

200

200

200 200

200

200

5

5

5

5

5 5

5

50

50 50

50 50

80

80

130

130 130

130

180

180

180

180

250

0

Iy(2,2) = (-1 x 130 + 8 x 180 + 0 x 250 – 8 x 0 +
1 x 5) / 12 = 109.58

Fig. 6. An illustration of gradient calculation for

Iy of BFB kernel coefficient.

100

100

100

100

200

200

5

5

5

5 5

50

50 50

50

80

80

130

130

180

180

180

180

210

0

100 10050130 180 180

100

100

100

100

200

200

5

5

5

5 5

50

50 50

50

80

80

130

130

180

180

180

180

30

0

Current

Frame (t)
x, y

100

200

80

100

200

80

5

180

100

5

180

50 050 130130

-1
8

-8
1

0

1/12

BFB Kernal

100

100

100

100

200

200

5

5

5

5 5

50

50 50

50

80

80

130

130

180

180

180

180

5

0

5

5

50

50

130

200 5050200 130180

100

100

100

100

200

200

5

5

5

5 5

50

50 50

50

80

80

130

130

180

180

180

180

10

0

5

50

50

200

80

100 200 1301800 5

100

100

100

100

100

100

200

200

200 200

200

200

5

5

5

5

5 5

5

50

50 50

50 50

80

80

130

130 130

130

180

180

180

180

250

0

Frame (t+2)

Frame (t+1)

Frame (t-1)

Frame (t-2)

It(2,2) = (-1 x 210 + 8 x 30 + 0 x 5 – 8 x 10 + 1 x 250) / 12 = 16.66

Fig. 7. An illustration of gradient calculation for It of BFB kernel coefficient.

AU J.T. 15(1): 8-16 (Jul. 2011)

Review Article 11

Minimization

In practice, the image intensity or

brightness measurement may be corrupted by

quantization or noise. According to the

equation for the rate of change of image

brightness:

I(x,y,t) = I(x+u, y+v, t+1), (3)

ε = u Ix + v Iy + It = 0, (4)

where u and v are the horizontal and vertical

motion vectors of optical flow, respectively,

one cannot expect ε to be zero. The problem is

to minimize the sum of errors in the equation

for the rate of change of image brightness as

near as 0. So, the smoothness weight (α) is

iteratively presented as (see also Fig. 8):

 
222

1

yx

t

k

y

k

xxkk

II

IvIuII
uu







,

 

222

1

yx

t

k

y

k

xykk

II

IvIuII
vv







,

 (5)

Iy It

Set of calculated partial derivative of image brightness

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

x x x x x x

Average of u

initial as zero

Calculate

Equation (5) of u

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x

1/12 1/6 1/12

1/12 1/6 1/12

1/6 -1 1/6

Calculate

Equation (5) of u

On Iterative

process

1

2

3

Calculate neighborhood average

of u from weighting average kernal

u

0.5733 0.4542 0.1934 -0.1363 -0.2052 -0.0659

0.5506 0.3531 0.1241 -0.0495 -0.0827 -0.0243

0.3854 -0.0199 -0.1247 0.1175 0.1824 0.0526

0.4559 0.1522 -0.0099 0.0419 0.0618 0.0178

0.3375 -0.0565 -0.1396 0.1243 0.1936 0.0559

0.2082 -0.0080 -0.0653 0.0620 0.0963 0.0278

Ix

0.6004 1.8415 3.5463 5.6271 26.0278 61.2713

0.0437 0.8673 1.9054 4.0696 22.5770 53.0679

-0.1193 0.8490 2.2445 4.7294 25.5260 60.0092

0.0971 0.8149 1.6738 3.5593 19.8569 46.6733

0.0142 0.4605 1.0280 2.2042 12.2327 28.7533

0.9826 0.3213 -0.5030 -1.2654 -1.3316 -0.6672

12.0642 12.2035 12.0814 11.6649 10.5527 6.2879

10.9551 10.9618 10.6642 10.0669 9.0491 5.4318

22.5745 22.4879 22.1387 21.5069 19.5018 11.5861

53.7686 53.5732 52.7405 51.2218 46.4426 27.5944

0.0785 1.1705 2.7961 5.2519 26.6503 62.6833 1.9604 1.5212 0.9340 0.3146 0.1413 0.1816

-0.2184 -0.2234 -0.0524 0.0229 0.0079 0.0011

-0.0001 0.0001 0.0016 -0.0031 -0.0066 -0.0010

0.0005 -0.0011 0.0002 -0.0016 -0.0022 -0.0003

-0.0001 0.0001 0.0005 -0.0009 -0.0050 -0.0011

-0.0000 0.0000 0.0000 -0.0001 -0.0005 -0.0005

-0.0105 -0.1050 -0.0388 0.0093 0.0031 0.0004

Calculated Result of Process 1

-0.0752 -0.0686 -0.0474 -0.0053 0.0084 0.0027

0.0000 0.0002 -0.0007 -0.0018 -0.0022 -0.0019

-0.0122 -0.0214 -0.0149 -0.0027 -0.0004 -0.0008

0.0000 0.0002 -0.0001 -0.0017 -0.0019 -0.0017

-0.0000 0.0001 0.0000 -0.0006 -0.0011 -0.0007

-0.0877 -0.0681 -0.0416 -0.0063 0.0044 0.0011

2

-0.2202 -0.2123 -0.0573 0.0232 0.0079 0.0011

0.0000 0.0010 0.0012 -0.0047 -0.0058 -0.0009

-0.0127 -0.0182 -0.0110 -0.0031 -0.0016 -0.0003

0.0000 0.0004 0.0003 -0.0025 -0.0045 -0.0009

-0.0000 0.0001 0.0000 -0.0006 -0.0011 -0.0004

-0.0920 -0.1099 -0.0363 0.0094 0.0031 0.0004

3Calculated Result of Process Calculated Result of Process

Fig. 8. An illustration of the iterative minimization process for u where steps 2 and 3 are iterative.

AU J.T. 15(1): 8-16 (Jul. 2011)

Review Article 12

where ku and kv denote horizontal and vertical

neighborhood averages (ku and kv), which

initially are set to zero and then the weighted

average of the value at neighboring points

based on the kernel in Fig. 8 is applied for

further iterations using Eq. (5) as illustrated in

Figs. 9-10. The smoothness weight (α) plays an

important role where the brightness gradient is

small, for which the suitable value should be

determined.

1/12 1/6 1/12

1/6 -1 1/6

1/12 1/6 1/12

Fig. 9. Weighted average kernel at

neighboring points.

% Set initial value of u and v to zero

u = 0;
v = 0;

% Weighted Average kernel

kernel=[1/12 1/6 1/12;1/6 0 1/6;1/12

 1/6 1/12];

%Minimizing Iterations (100 times)

for i=1:100

%Compute local averages of the vectors

 uAvg=conv2(u,kernel,'same');
 vAvg=conv2(v,kernel,'same');

%Compute flow vectors constrained by the local

averages and the optical flow constraints,

where alpha is the smoothing weight

 u = uAvg - (Ix .* ((Ix .* uAvg) +

(Iy .* vAvg) + It)) ./ (alpha^2 +

Ix.^2 + Iy.^2);

 v = vAvg - (Iy .* ((Ix .* uAvg) +

(Iy .* vAvg) + It)) ./ (alpha^2 +

Ix.^2 + Iy.^2);

end

Fig. 10. MATLAB
®
 code of the iterative

minimization process.

Conclusion

According to the characteristic of the HS

algorithm, when applied with the BFB kernel it

provides simplicity in the algorithm with

reasonable performance and better quality, but

the value of the smoothing weight (α) cannot

be defined exactly because the suitable value is

varying upon different image sequences. As a

consequence, the suitable iteration times also

cannot be defined for the best outcome, which

impacts the processing time for the best motion

vector at the output. Figures 11-14 show the

results for the motion vector of the HS

algorithm from the partial representation of

Foreman, Coastgurad, Akiyo and Container

video sequences, respectively. The results of

the motion vector identify the direction of pixel

movement from the two different consecutive

frames under the smoothing weight α = 10 and

100 iterations of the minimizing process.

References

Barron, J.L.; Fleet, D.J.; and Beauchemin,

S.S. 1994. Performance of optical flow

techniques. International Journal of

Computer Vision 12(1): 43-77.

Horn, B.K.P.; and Schunck, B.G. 1981.

Determining optical flow. Artificial

Intelligence 17(1-3): 185-203.

Kesrarat, D.; and Patanavijit, V. 2011.

Performance analysis on weighting factor (α)

on spatial temporal gradient technique and

high confidence reliability with sub-pixel

displacement. Proc. 8
th

 International

Conference on Electrical Engineering/

Electronics, Computer, Telecommunications

and Information Technology (ECTI-CON

2011), Khon Kaen, Thailand, 17-19 May

2011, pp. 1,043-46.

AU J.T. 15(1): 8-16 (Jul. 2011)

Review Article 13

Fig. 11. Examples of the motion vector of the HS algorithm from a part of FOREMAN sequence.

AU J.T. 15(1): 8-16 (Jul. 2011)

Review Article 14

Fig. 12. Examples of the motion vector of the HS algorithm from a part of COASTGUARD sequence.

AU J.T. 15(1): 8-16 (Jul. 2011)

Review Article 15

Fig. 13. Examples of the motion vector of the HS algorithm from a part of AKIYO sequence.

AU J.T. 15(1): 8-16 (Jul. 2011)

Review Article 16

Fig. 14. Examples of the motion vector of the HS algorithm from a part of CONTAINER sequence.

