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Abstract 
 

The Horn-Schunk algorithm (HS) is one of the classical algorithms in optical flow 

due to its reasonable performance and simplicity of the algorithm. This article presents 

in detail the process of the HS algorithm and its step by step coding in MATLAB
®
. The 

HS algorithm is a technique used to identify the image velocity or motion vector based 

on Spatial Temporal Gradient Technique which computes the image velocity from 

spatiotemporal derivatives of image intensity. Firstly, the original estimated intensity 

for gradient constraint on the image sequence is obtained by using the gradient 

constraint with a global smoothness. Then, iterative equations are solved to minimize 

the sum of the errors for the rate of change of image gradient intensity and obtain the 

image velocity. 

Keywords: Spatial Temporal Gradient Technique, gradient intensity, motion 

vector, image velocity. 

 

Introduction 
 

Optical flow is a technique used for many 

particular fields, such as motion estimation to 

predict the motion vector of a moving object, 

video compression and reconstruction for 

reducing temporal redundancy present in frame 

sequences and allowing a better compression of 

video material, and image segmentation for 

tracking a moving object. In conventional 

predictive methods for motion estimation, the 

difference between the current frame and the 

predicted frame, based on a previous frame 

(motion vector, or MV), is coded and 

transmitted; then it is used to reconstruct a 

higher resolution still image or video sequence 

from a sequence of low resolution images in 

achieving super-resolution (Kesrarat and 

Patanavijit 2011). This article concentrates on a 

classical optical flow algorithm, namely the 

Horn-Schunck algorithm (HS) proposed by 

Horn and Schunck (1981). The HS algorithms 

are the most popular differential algorithms 

which have been applied for many applications 

and have been referenced for many 

performance evaluation models. Barron, Fleet 

and Beauchemin (BFB) adjusted the kernel 

model for performance evaluation over HS 

algorithms, but its focus is on the density of 

velocity (Barron et al. 1994). This article 

explains the motion estimation algorithm based 

on the Horn-Schunk optical flow algorithm 

(HS), which applies the kernel of BFB, and 

also represents the algorithm step by step in 

MATLAB
®
.  

 

Horn-Schunk Algorithm (HS)  
 

This algorithm is based on a differential 

technique computed by using a gradient 

constraint (brightness constancy) with a global 

smoothness to obtain an estimated velocity 

field (Horn and Schunk 1981). There are two 

main processes for the implementation of the 

HS algorithm. The first one is an estimation of 

partial derivatives, and the second one is a 

minimization of the sum of the errors by an 

iterative process to present the final motion 

vector. 
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Estimation of classical partial derivatives 
This section presents the estimation 

process of the classical derivatives of image 

intensity or brightness from the image 

sequence. The brightness of each pixel is 

constant along its motion trajectory in the 

image sequence. The relationship in continuous 

images sequence will be taken into account to 

estimate the original intensity for a gradient 

constraint. Let I(x,y,t) denote the gradient 

intensity (brightness) of point (x,y) in the 

images at time t. In each image sequence, Ix, Iy, 

and It are computed for each pixel (see also 

Figs. 1-2): 

Ix = ¼ {Ix,y+1,t - Ix,y,t + Ix+1,y+1,t - Ix+1,y,t + Ix,y+1,t+1 - 

Ix,y,t+1 + Ix+1,y+1,t+1 - Ix+1,y,t+1}, 

Iy = ¼{Ix+1,y,t - Ix,y,t +Ix+1,y+1,t - Ix,y+1,t +Ix+1,y,t+1 - 

Ix,y,t+1 + Ix+1,y+1,t+1 - Ix,y+1,t+1}, 

It = ¼ {Ix,y,t+1 - Ix,y,t + Ix+1,y,t+1 - Ix+1,y,t + Ix,y+1,t+1 - 

Ix,y+1,t + Ix+1,y+1,t+1 - Ix+1,y+1,t}. 

      (1) 
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Ix = ((105 – 5) + (185 – 0) + (100 –3 0) + (180 

– 0)) / 4 = 133.75 
Iy = ((0 – 5) + (185 – 105) + (0 – 30) + (180 – 

100)) / 4 = 31.25 
It = ((30 – 5) + (0 – 0) + (100 – 105) + (180 – 

185)) / 4 = 3.75 

Fig. 1. The partial derivatives of image 
brightness at point (x, y). 

 

Estimation of partial derivatives on BFB 

kernel  
 Barron et al. (1994) proposed 

performance evaluation over many algorithms 

of optical flow and modification of some of the 

variant variables. We focus on the kernel of 

mask coefficient for gradient estimation which 

is the core functional of the HS algorithms. The 

gradient estimation kernel of the BFB model 

uses 4-point central differences for 

differentiation defined as (see also Figs. 3-7): 

Ix = 1/12 {-1  Ix,y-2 + 8  Ix,y-1 + 0  Ix,y  - 8  

Ix,y+1 + 1  Ix,y+2}, 

Iy = 1/12 {-1  Ix-2,y + 8  Ix-1,y + 0  Ix,y  - 8  

Ix+1,y + 1  Ix+2,y}, 

It = 1/12 {-1  Ix,y,t-2 + 8  Ix,y,t-1 + 0  Ix,y,t  - 8  

Ix,y,t+1 + 1  Ix,y,t+2}. 

      (2) 

It is known that in most situations of 

motion estimation one may use only two 

frames to calculate It as shown in Fig. 6. As a 

result of using the BFB kernel, it presents more 

stability of original gradient estimation than the 

result of performance evaluation in Barron et al. 

(1994). 

% im1 is gray image sequence at time t 

% im2 is gray image sequence at t+1 
 

Ix = conv2(im1,0.25* [-1 1; -1 

1],'same') + conv2(im2, 0.25*[-1 1; -1 

1],'same'); 
 

Iy = conv2(im1, 0.25*[-1 -1; 1 1], 

'same') + conv2(im2, 0.25*[-1 -1; 1 

1], 'same'); 
 

It = conv2(im1, 0.25*ones(2),'same') + 

conv2(im2, -0.25*ones(2),'same'); 

Fig. 2. MATLAB
®
 code for gradient estimation 

with original partial derivatives. 

 

1/12 -1 8 0 -8 1 

Fig. 3. The kernel coefficient of BFB. 

 

% im1 is gray image sequence at time t 

% im2 is gray image sequence at t+1 
 

Ix= conv2(im1,(1/12)*[-1 8 0 -8 1],  

 'same'); 

 

Iy= conv2(im1,(1/12)*[-1 8 0 -8 1]',  

 'same'); 

 

It = conv2(im1, ones(1),'same') +  

 conv2(im2, -ones(1),'same');  

 

% modify ft because there are only 2 frames 

which are used for calculation  

Fig. 4. MATLAB
®
 code for gradient estimation 

with BFB kernel of 2-image sequence. 
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Ix(2,2) = (-1 x 200 + 8 x 5 + 0 x 250 – 8 x 100 + 
1 x 80) / 12 = -73.33 

 

Fig. 5. An illustration of gradient calculation for 
Ix of BFB kernel coefficient. 
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Iy(2,2) = (-1 x 130 + 8 x 180 + 0 x 250 – 8 x 0 + 
1 x 5) / 12 = 109.58 

 
Fig. 6. An illustration of gradient calculation for 

Iy of BFB kernel coefficient. 
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It(2,2) = (-1 x 210 + 8 x 30 + 0 x 5 – 8 x 10 + 1 x 250) / 12 = 16.66 

Fig. 7. An illustration of gradient calculation for It of BFB kernel coefficient. 
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Minimization 

 

In practice, the image intensity or 

brightness measurement may be corrupted by 

quantization or noise. According to the 

equation for the rate of change of image 

brightness: 

 

I(x,y,t) = I(x+u, y+v, t+1),   (3) 

 

ε = u Ix + v Iy + It = 0,   (4)
 

 

where u and v are the horizontal and vertical 

motion vectors of optical flow, respectively, 

one cannot expect ε to be zero. The problem is 

to minimize the sum of errors in the equation 

for the rate of change of image brightness as 

near as 0. So, the smoothness weight (α) is 

iteratively presented as (see also Fig. 8): 

 

 
222

1

yx

t

k

y

k

xxkk

II

IvIuII
uu







, 

 

 
 

222

1

yx

t

k

y

k

xykk

II

IvIuII
vv







, 

      (5) 

 

Iy It

Set of calculated partial derivative of image brightness

0   0    0    0   0    0
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0   0    0    0   0    0

x   x    x    x   x    x

Average of u 

initial as zero

Calculate 

Equation (5) of u

x   x    x    x   x    x

x   x    x    x   x    x

x   x    x    x   x    x

x   x    x    x   x    x

x   x    x    x   x    x

x

1/12   1/6   1/12

1/12   1/6   1/12

1/6     -1     1/6

Calculate 

Equation (5) of u

On Iterative 

process

1

2

3

Calculate neighborhood average 

of u from weighting average kernal

u

0.5733    0.4542    0.1934   -0.1363   -0.2052   -0.0659

0.5506    0.3531    0.1241   -0.0495   -0.0827   -0.0243

0.3854   -0.0199   -0.1247    0.1175    0.1824    0.0526

0.4559    0.1522   -0.0099    0.0419    0.0618    0.0178

0.3375   -0.0565   -0.1396    0.1243    0.1936    0.0559

0.2082   -0.0080   -0.0653    0.0620    0.0963    0.0278

Ix

0.6004    1.8415    3.5463    5.6271   26.0278   61.2713

0.0437    0.8673    1.9054    4.0696   22.5770   53.0679

-0.1193    0.8490    2.2445    4.7294   25.5260   60.0092

0.0971    0.8149    1.6738    3.5593   19.8569   46.6733

0.0142    0.4605    1.0280    2.2042   12.2327   28.7533

0.9826    0.3213   -0.5030   -1.2654   -1.3316   -0.6672

12.0642   12.2035 12.0814  11.6649  10.5527    6.2879

10.9551   10.9618  10.6642 10.0669    9.0491    5.4318

22.5745   22.4879 22.1387 21.5069  19.5018   11.5861

53.7686   53.5732 52.7405 51.2218   46.4426   27.5944

0.0785    1.1705    2.7961    5.2519   26.6503   62.6833 1.9604    1.5212    0.9340    0.3146    0.1413    0.1816

-0.2184   -0.2234   -0.0524    0.0229    0.0079    0.0011

-0.0001    0.0001    0.0016   -0.0031   -0.0066   -0.0010

0.0005   -0.0011    0.0002   -0.0016   -0.0022   -0.0003

-0.0001    0.0001    0.0005   -0.0009   -0.0050   -0.0011

-0.0000    0.0000    0.0000   -0.0001   -0.0005   -0.0005

-0.0105   -0.1050   -0.0388    0.0093    0.0031    0.0004

Calculated Result of Process 1

-0.0752   -0.0686   -0.0474   -0.0053    0.0084    0.0027

0.0000    0.0002   -0.0007   -0.0018   -0.0022   -0.0019

-0.0122   -0.0214   -0.0149   -0.0027   -0.0004   -0.0008

0.0000    0.0002   -0.0001   -0.0017   -0.0019   -0.0017

-0.0000    0.0001    0.0000   -0.0006   -0.0011   -0.0007

-0.0877   -0.0681   -0.0416   -0.0063    0.0044    0.0011

2

-0.2202   -0.2123   -0.0573    0.0232    0.0079    0.0011

0.0000    0.0010    0.0012   -0.0047   -0.0058   -0.0009

-0.0127   -0.0182   -0.0110   -0.0031   -0.0016   -0.0003

0.0000    0.0004    0.0003   -0.0025   -0.0045   -0.0009

-0.0000    0.0001    0.0000   -0.0006   -0.0011   -0.0004

-0.0920   -0.1099   -0.0363    0.0094    0.0031    0.0004

3Calculated Result of Process Calculated Result of Process 

 
Fig. 8. An illustration of the iterative minimization process for u where steps 2 and 3 are iterative. 

 



AU J.T. 15(1): 8-16 (Jul. 2011) 

Review Article 12 

where ku and kv denote horizontal and vertical 

neighborhood averages ( ku and kv ), which 

initially are set to zero and then the weighted 

average of the value at neighboring points 

based on the kernel in Fig. 8 is applied for 

further iterations using Eq. (5) as illustrated in 

Figs. 9-10. The smoothness weight (α) plays an 

important role where the brightness gradient is 

small, for which the suitable value should be 

determined. 

 

1/12 1/6 1/12 

1/6 -1 1/6 

1/12 1/6 1/12 

 
Fig. 9. Weighted average kernel at 

neighboring points. 

 

 
 
% Set initial value of u and v to zero 

u = 0; 
v = 0; 
 
% Weighted Average kernel 

kernel=[1/12 1/6 1/12;1/6 0 1/6;1/12  

 1/6 1/12]; 

 
%Minimizing Iterations (100 times) 

for i=1:100 
  
%Compute local averages of the vectors 

  

 uAvg=conv2(u,kernel,'same'); 
 vAvg=conv2(v,kernel,'same'); 
  
%Compute flow vectors constrained by the local 

averages and the optical flow constraints, 

where alpha is the smoothing weight 

 
 u = uAvg - ( Ix .* ( ( Ix .* uAvg ) + 

( Iy .* vAvg ) + It ) ) ./ ( alpha^2 + 

Ix.^2 + Iy.^2);  
  

 v = vAvg - ( Iy .* ( ( Ix .* uAvg ) + 

( Iy .* vAvg ) + It ) ) ./ ( alpha^2 + 

Ix.^2 + Iy.^2); 
 

end 

 
 

Fig. 10. MATLAB
®
 code of the iterative 

minimization process. 

 

Conclusion 
 

According to the characteristic of the HS 

algorithm, when applied with the BFB kernel it 

provides simplicity in the algorithm with 

reasonable performance and better quality, but 

the value of the smoothing weight (α) cannot 

be defined exactly because the suitable value is 

varying upon different image sequences. As a 

consequence, the suitable iteration times also 

cannot be defined for the best outcome, which 

impacts the processing time for the best motion 

vector at the output. Figures 11-14 show the 

results for the motion vector of the HS 

algorithm from the partial representation of 

Foreman, Coastgurad, Akiyo and Container 

video sequences, respectively. The results of 

the motion vector identify the direction of pixel 

movement from the two different consecutive 

frames under the smoothing weight α = 10 and 

100 iterations of the minimizing process. 
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Fig. 11. Examples of the motion vector of the HS algorithm from a part of FOREMAN sequence. 
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Fig. 12. Examples of the motion vector of the HS algorithm from a part of COASTGUARD sequence. 
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Fig. 13. Examples of the motion vector of the HS algorithm from a part of AKIYO sequence. 
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Fig. 14. Examples of the motion vector of the HS algorithm from a part of CONTAINER sequence. 

 

 


