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Abstract 
 

There is a need to create a model for the distribution of data in computer 

networks such that almost every computer system on the network participates in the 

consumption and re-distribution of the data and no computer system is over-loaded in 

the process. This paper presents a network design that will offer an extremely low 

latency that is required in implementation. Also, it creates a new algorithmic pattern in 

streaming real-time data to an unlimited number of subscribers. And this ensures that 

all systems receive the same data at every instance so that no user consumes the data 

before others. The completion of this project has demonstrated the advantages of 

distributing data in a balanced dynamic tree pattern and its usage spans data 

replication and synchronisation in databases, application server clustering and real-

time multimedia broadcast; although this work focuses primarily its use in the latter. 

Keywords: Real-time multimedia broadcast, low latency, computer network. 

 

Introduction 
 

The deployment of high-performance 

servers for real-time broadcast has become a 

norm in the computing societies. These servers 

offer the required optimum concurrency needed 

in serving the real-time data of all subscribing 

client computer systems. For instance, in order 

to deploy a server to stream real-time 

multimedia data to client systems one may 

have to consider a number of factors: these 

include the number of concurrent client 

systems being connected and the rate of data-

on-demand from each client system. 

Having known this, it will almost be 

impossible to broadcast multimedia data to 

numerous client systems from a single personal 

computer system due to the fact that this 

arrangement will either remarkably slow down 

the transmission or hang up the server system. 

The purpose of this work is to find an optimum 

approach around this challenge. 

Todd Lammle observed that routers, by 

default, break up a broadcast domain - the set 

of all devices on a network segment that hear 

all the broadcasts sent on that segment 

(Lammle 2007). 

 

Design and Implementation 
 

Design 

 

All but the very simplest embedded 

systems now work in conjunction with a real-

time operating system. A real-time operating 

system manages processes and resource 

allocations in a real-time broadcast. It starts 

and stops processes so that stimuli can be 

handled and allocates memory and processor 

resources. 

The components of a real-time operating 

system depend on the size and complexity of 

the real-time network being developed 

(Sommerville 2007). For all systems, except 

the simplest ones, they usually include (see Fig. 

1): 

- A real-time clock: The clock provides 

signals to schedule processes 

periodically. 
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- An interrupt handler: This component 

manages aperiodic requests for 

service. 

- A scheduler: This component is 

responsible for examining the 

processes that can be executed and 

choosing one of these for execution. 

- A resource manager: Given a process 

that is scheduled for execution, the 

resource manager allocates 

appropriate memory and processor 

resources. 

- A dispatcher: This component is 

responsible for starting the execution 

of a process. 

In this work, additional facilities are 

needed, such as: disk storage management and 

fault management facilities that detect and 

report system faults; and a configuration 

manager that supports the dynamic 

reconfiguration of real-time applications. 

 

 

Fig. 1. Components of a real-time operating system. 

 

Distribution Dynamics 
 

Suppose there are n users hoping to 

receive streams from a server. However, there 

is no guarantee that the system will be able to 

broadcast the said streams to all n users. 

Using the unique approach proposed in 

this work, all receiving devices can be placed 

in a queue in the order of their attempt to 

connect to the server as shown in Fig. 2. 

Therefore, whenever the first subscriber (n-(n-

1)) requests a connection, he occupies the first 

block of the queue, the second user (n-(n-2)) 

occupies the second block and so on. With this 

pattern, the first user reads an amount of data 

from the server, saves it temporarily in its 

memory and consumes it from this temporal 

storage. Whenever the second user requests a 

connection, it shall be granted a permission to 

stream continuously from the first user‟s 

system. Then the third user does the same to 

receive the stream from the second user (Reilly 

and Reilly 2002). 

According to a linear model for the 

distribution of data among clients based on this 

approach, the server shall only be responsible 

for the first user‟s connection but also for all 

users‟ authentication. 

 

 
Fig. 2. A queue of receiving devices attempting to connect to the server.
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A Further Review 
 

As brilliant as the proposed technique 

may seem to be, there are loopholes that can 

completely bring the streaming strategy into 

disrepute. Firstly, the latency will depend on 

the number of systems connected. This means 

that there will be absolutely no hope of 

coherence in the distribution of TV broadcast 

or all the subscribing client systems will be 

forced to wait for a lengthy period of time to 

achieve this. Secondly, consider a broadcast 

chain of 1,000 users using the linear approach. 

If the computer system of the 10
th

 subscriber 

goes out of service, it means that the remaining 

990 dependents will be completely cut off from 

the broadcast (Hac 2003). 

These are, of course, major drawbacks of 

the linear approach. However, these can be 

significantly reduced by merely introducing the 

tree-based approach. Here every user 

broadcasts on the average to two additional 

users. This is represented schematically in the 

diagram shown in Fig. 3. 

 
Fig. 3. A tree-based model for the distribution 
of data among clients. 

 

This is obviously an enhanced form of 

the linear approach as each strand of the 

balanced tree shows linearity as in 

(1)(2)(4)(8). However, the number of 

users that can be cut off is inversely related to 

the depth of the tree. The total number of 

depths in a 1,000-user system is 

2
d
-1 = 1,000, or 

d = log10 1001 / log10 2, therefore, 

d = 3.000434 / 0.301029, 

d = 9.9673 ≈ 10. 

The 10
th

 user can be found at the 4
th

 

depth with 7 other users. But between the 1
st
 

and the 4
th

 depth, there are 15 users, thus 

leaving 985 users for evaluation. Since all 8 

users at depth 4 will equally share the load of 

all additional users, the maximum number of 

users that can get disconnected as a result of 

the 10 
th

 user‟s failure is 985 / 8 ≈ 123 users. 

This is a big 867-user improvement over the 

linear approach. Note that this value shows a 

more significant improvement as the depth 

increases (Stevens 1994). Table 1 shows this 

improvement for eventual 40
th

 subscriber 

failure. 

 
Table 1. Amount of disconnected systems due 
to eventual 40th subscriber failure. 

Number of 

users in the 

system 

Amount of disconnected 
systems due to eventual 40th 

subscriber failure 

Linear 
approach 

Tree-based 
approach 

1,000 960 29 

10,000 9,960 310 

100,000 99,960 3,123 

1000,000 999,960 31,248 

10,000,000 9,999,960 312,498 

 

One possible drawback of this approach 

is that the broadcast can be negatively 

influenced if a remarkably slow computer 

system comes in between. This can, however, 

be avoided by setting a minimum system 

requirement. 

 

Checkmating Error Situations 
 

In any of the two approaches, the goal is 

to ensure the streaming restoration in the 

presence of disconnected subscribers without 

loss of data or increased transmission time. 

This can simply be ensured in 3 steps by: 

- Monitoring the amount of bytes read 

by each system; 

- Determining which parent node 

disconnects; 

- Then making the node with the 

highest bytes read (among the failed 

systems) the new parent node so that 

all others will then re-attach to it. 

This process, however, assumes that 

every system in the network has read an 

amount of bytes sufficient to be consumed all 

through the shutdown and handshaking process 

(period between loosing and regaining a 

connection). 
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Yet Another Review 
 

There is yet another challenge. Iimagine 

that a football match is being broadcast and 8 

people shout “it‟s a goal” at time t, followed by 

16 people at time t+x, 32 at time t+2x, 64 at 

time t+3x, and so on. This means that the 

broadcast of the football match has no longer 

been delivered under the pretence of live cast. 

If the network latency between any two 

systems is 100 milliseconds, then in the tree-

based approach it means that the number of 

depths will correspond to the amount of 

milliseconds of the time difference between the 

first and the last subscribers. This means that in 

a 30-depth arrangement the last set of 

subscribers will lag the topmost subscribers by 

about 3 seconds. What if one can, firstly, delay 

the transmission by say, 5 seconds, in order for 

all subscribers to read sufficient amount of 

bytes and, secondly, determine the latency of 

the network. With this knowledge, one can 

ensure that a particular block of data gets to 

every user before any other user can watch it 

(Drake 2005, Sedgewick 2002). 

To accomplish this task, one can use the 

following time corrector: 

t =( 



nd

d 2 l/f),    (1) 

where: 

t = time to play (standard measurement in 

milliseconds); 

l = network latency between any two depths; 

d = (depth position of the last system in 

consideration); 

f = d - 1; 

n = number of depths. 

There is a word of caution here. Firstly, 

one cannot determine the latency of the first 

depth position: latency starts from the second 

depth position. However, the above formula 

will compute the time of play for almost every 

depth position including the first one. 

Secondly, the users at the last depth do not 

need to compute this time of play because the 

last depth is the zeroth frame of reference in 

Eq. (1). Hence, the users at the last depth 

should just consume the data once received. 

Time to play (t) is the amount of time a 

subscriber should wait before consuming a 

resource. In this regard, it means that every 

subscriber system will compute its own time to 

start watching the TV content and this time 

increases down the tree. 

 

Process Management 
 

Real-time systems have to handle 

external events quickly and, in some cases, 

meet deadlines for processing these events. 

This means that the event-handling processes 

must be scheduled for execution in time to 

detect an event and must have sufficient 

processor resources to meet its deadline. The 

process manager in a real-time operating 

system is responsible for choosing processes 

for execution, allocating processor and memory 

resources, and starting and stopping the 

execution of processes on a processor as shown 

in Fig. 4. 
 

 
 

 
 

 

Fig. 4. Actions of a real-time operating system 
required to start a process. 
 

The Java code snippets below show the 

different segments described in the „Design‟ 

section above (Harold 2004). 
 

/** 
* lets every PC check if there's an update in 
the system 
*/ 
staticint current = 0; 
 
/** 
* lets the server set its IP 
*/ 
static String serverIP = ""; 
 

Dispatcher 

Start execution on an 
available processor 

Scheduler 

Choose process for 
execution 

Resource Manager 

Allocate memory and 
processor 
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/** 
* gets the current count so that systems can 
know if there's a * change in the system. 
* Infact, client systems should request this at 
once in five seconds 
*/ 
publicintgetCurrent() { 
return current; 
} 
 
/** 
* gets the IP of the server so that clients can 
know whom to ping *to periodically measure 
their performance. 
* Infact, client systems should perform this 
operation at start-up 
*/ 
public String getServerIP() { 
returnserverIP; 
} 
 

/** 
* return the IPs (max of 2) that are to be fed by 
the supplied IP 
*/ 
public String getReceivers(String ip) 
{ 
String receiver1 ="";String receiver2 =""; 
 
if(smart.length-1 >= 2*extractIpIndex(ip)+1) 
receiver1 = 
String.valueOf(smart[2*extractIpIndex(ip)+1].g
etIp()); 
if(smart.length-1 >= 2*extractIpIndex(ip)+2) 
receiver2 = 
String.valueOf(smart[2*extractIpIndex(ip)+2].g
etIp()); 
return receiver1+"*.*"+receiver2; 
} 
 

/** 
* return the IP of the system that serves this IP 
streaming media 
*/ 
public String getGiver(String ip) 
{ 
String giver1 =""; 
if(extractIpIndex(ip) <= 4 &&extractIpIndex(ip) 
>= 0) 
giver1 = getServerIP(); 
else if(smart.length-1 >= (extractIpIndex(ip)-
1)/2 &&extractIpIndex(ip) >= 0) 
giver1 = 
String.valueOf(smart[(extractIpIndex(ip)-
1)/2].getIp()); 
 

return giver1; 
} 
 

/** 
* Searches for the index of the IP so that the 
giver and receivers *can be computed. Returns 
-1 if not found. 
* This algorithm uses a linear search pattern. It 
is quite * inefficient for large data 
*/ 
publicintextractIpIndex(String ip) 
{ 
int k = -1; 
for(int i = 0;i<smart.length;i++) 
{ 
if(smart[i].getIp().equals(ip)) 
k = i; 
} 
return k; 
} 
 

The process manager has to manage 

processes with different priorities. For some 

stimuli, such as those associated with certain 

exceptional events, it is essential that their 

processing should be completed within the 

specified time limits. Other processes may be 

delayed if a more critical process requires 

service. Consequently, the real-time operating 

systems have to be able to manage at least two 

priority levels for system processes: 

- Interrupt level: This is the highest 

priority level. It is allocated to 

processes that need a very fast 

response. One of these processes will 

be the real-time clock process. 

- Clock level: This level of priority is 

allocated to periodic processes. 

For the implementation of this work, the 

Java code snippet below shows a part of the 

process manager that deals with interrupt 

handling. 
 

/** 

 * removes a malfunctioning system from 

distribution then *re-shuffules the remaining clients 

based on the applied algorithm. 

*/ 

publicbooleanremoveIP(String ip) 

{ 

booleanbool = false; 

Smart sm; 

int k = -1; 

for(int i = 0;i<smart.length;i++) 

 { 
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if(smart[i].getIp().equals(ip)) 

 { 

sm = smart[i]; 

set.remove(sm); 

Smart[] smm = new Smart[set.size()]; 

Iterator iter = set.iterator(); 

for(int ii=0;ii<=smm.length-1;ii++) 

 { 

smm[ii] = (Smart) iter.next(); 

 } 

smart = sl.mergeSort(smm); 

current++; 

bool = true; 

 } 

 } 

returnbool; 

} 
 

There may be a further priority level 

allocated to background processes (such as a 

self-checking process) that do not need to meet 

real-time deadlines. These processes are 

scheduled for execution when processor 

capacity is available. Within each one of these 

priority levels, different classes of processes 

may be allocated different priorities. For 

example, there may be several interrupt lines. 

An interrupt from a very fast device may have 

to pre-empt the processing of an interrupt from 

a slower device to avoid information loss. The 

allocation of process priorities so that all 

processors are serviced in time usually requires 

extensive analysis and simulation. 

Periodic processes are processes that 

must be executed at specified time intervals for 

data acquisition and actuator control. In most 

real-time systems, there will be several types of 

periodic processes. These will have different 

periods (the time between process executions), 

execution times and deadlines (the time by 

which the processing must be completed). 

Using the timing requirements specified in the 

application program, the real-time operating 

system arranges the execution of periodic 

processes so that they can all meet their 

deadlines. 
 

Priority Handling 
 

In order to actualize a stable distribution 

paradigm, several time-delay and interrupt 

factors were examined. These include: memory 

availability to process multimedia request 

(client side), network latency, and processor 

availability (client side). In the course of this 

work, it was concluded that network latency is 

of a high relevance for today‟s computing 

hardware.  

Having considered the real-time nature of 

the project, the distribution model uses merge-

sort algorithm in arranging client systems 

according to their current performance state. 

The merge-sort algorithm is an example of a 

divide-and-conquer algorithm. In such an 

algorithm, one divides the data into smaller 

pieces, recursively conquers each piece, and 

then combines the partial results into a final 

result. 

An implementation of the merge-sort 

algorithm in Java language, as it is used in this 

work, is shown below. 

 
public class SortLatency { 
 
public static Smart[] mergeSort(Smart[] data) { 
returnmergeSortHelper(data, 0, data.length - 
1); 
 } 
 

protected static Smart[] 
mergeSortHelper(Smart[] data, int bottom, int 
top) { 
if (bottom == top) { 
return new Smart[] { data[bottom] }; 
 } else { 
int midpoint = (top + bottom) / 2; 
return merge(mergeSortHelper(data, bottom, 
midpoint),mergeSortHelper(data, midpoint + 1, 
top)); 
 } 
} 
 

 /** 
 * Combine the two sorted arrays a and b into 
one sorted array. 
 */ 
protected static Smart[] merge(Smart[] a, 
Smart[] b) { 
Smart[] result = new Smart[a.length + 
b.length]; 
int i = 0; 
int j = 0; 
for (int k = 0; k <result.length; k++) { 
if ((j == b.length) || ((i <a.length) && 
(a[i].getLatency() <= b[j].getLatency()))) { 
result[k] = a[i]; 
i++; 
 } else { 
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result[k] = b[j]; 
j++; 
 } 
 } 
return result; 
 } 
} 

 

Determining Latency 
 

Latency can be programmatically 

determined by sending a byte of data to a 

system at a certain depth following all 

connecting nodes in the tree-based connection 

(Microsoft
®

 Encarta
®

 Multimedia Encyclopedia 

2009). The value of the time taken to send and 

receive the byte forms the round-trip latency. 

This value should be computed over a range 

and the average divided by 2 should be the 

useful latency. The code snippet below shows 

the Java language representation of this task. 

 
InetAddress in = 
InetAddress.getByName("targetName"); 
longstartTime = System.currentTimeMillis(); 
booleanbool = in.isReachable(5000); 
longendTime = System.currentTimeMillis(); 
long latency = endTime-startTime; 
if(bool) 
System.out.println("Target is reachable, 
latency is: "+latency); 
else 
System.out.println("System is unreachable, 
timed-out after 5 seconds"); 

 

Tests, Results and Discussion 
 

Tests 

 

The server and clients systems were 

tested for response time and stability. In the 

case of response time, the following system 

configuration was used to conduct the test as 

shown in Table 2. Having built the data 

transmission system over a socket connection 

(point-to-point connection), data was 

transmitted from the server down the nodes as 

they are located down the balanced binary tree. 

Also, the holistic system behavior was 

studied under individual system failure. 

 

Table 2. Parameters of the data transmission 
system. 

Component Quantity or Size 

Number of Processors 2 

Processor Speed 2.1 GHz each 

RAM Size 2 GB Average 

Other Parameters 
Network Mode Peer-to-peer over 

wireless LAN 

Distance(s) between 
systems 

Average is less than 
20 metres 

Expected Multimedia 
network throughput 

150 kbps (average) 

 

Results 
 

After transmitting data in a depth-first 

traversal pattern it was realized that the 

response time was 0 milliseconds on the 

average. This value shows a remarkable 

improvement over the anticipated latency 

(response time) of 100 milliseconds as 

predicted in section „Another Review‟ above. 

In addition, a break between failover and re-

transmission was noticed whenever there was a 

breakdown in any client system. 

The diagrams in Figs. 5 and 6 show what 

happens if there is a failure in any of the 

systems. Figures 7 and 8 show streaming and 

captured media. 

 

Fig. 5. A diagram showing a 7-user system. 
 

 
Fig. 6. A recovery model assuming that a 6-
user system 6 is performing better than the 7-
user system. 
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Fig. 7. A server system is showing streaming media. 

 

 
Fig. 8. A client system is showing captured media. 

 

Discussion 
 

It is strongly recommended that the 100-

millisecond delay be implemented before 

feeding any client system with media data. This 

recommendation may be ignored only if there 

has been a major improvement in hardware and 

network technologies. 
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In the case of the noticed break in 

display, the system can be significantly 

enhanced by buffering data on the client side 

for the period of reception of the broadcast. 

 

Conclusion 
 

With all these considerations in place, the 

system has definitely been trained so as to 

behave optimally in such terrible load 

conditions. In addition, this design will be able 

to broadcast to an arbitrary amount of 

subscribers with all the feeding coming from 

one personal computer. As the technology 

advances and the computing facilities get more 

sophisticated, this work becomes more 

meaningful; such that it could possibly become 

a network paradigm. 

 

Recommendations 
 

1. It is recommended that the distribution 

of data between different layers be properly 

analyzed in a subsequent work.  

2. The use of this model in a network area 

where there is no multicast enabled device (or 

where the user is unsure about it), is absolutely 

encouraged. 

3. Most Nigerian firms and aspiring 

individuals may not have the financial base to 

start an online broadcast system. This is the 

primary reason of this research. It is highly 

encouraged that it is used in such situations.  
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