
AU J.T. 15(1): 23-31 (Jul. 2011)

Technical Report 23

Real-Time Multi-Node Data Transmission:

Designing a Low Latency Computer Network

Omokhafe James

Tola and Philip Temitope Oguntade

Department of Electrical and Computer Engineering, Federal University of Technology

Minna, Niger State, Nigeria

E-mail: <omokhafe@gmail.com>

Abstract

There is a need to create a model for the distribution of data in computer

networks such that almost every computer system on the network participates in the

consumption and re-distribution of the data and no computer system is over-loaded in

the process. This paper presents a network design that will offer an extremely low

latency that is required in implementation. Also, it creates a new algorithmic pattern in

streaming real-time data to an unlimited number of subscribers. And this ensures that

all systems receive the same data at every instance so that no user consumes the data

before others. The completion of this project has demonstrated the advantages of

distributing data in a balanced dynamic tree pattern and its usage spans data

replication and synchronisation in databases, application server clustering and real-

time multimedia broadcast; although this work focuses primarily its use in the latter.

Keywords: Real-time multimedia broadcast, low latency, computer network.

Introduction

The deployment of high-performance

servers for real-time broadcast has become a

norm in the computing societies. These servers

offer the required optimum concurrency needed

in serving the real-time data of all subscribing

client computer systems. For instance, in order

to deploy a server to stream real-time

multimedia data to client systems one may

have to consider a number of factors: these

include the number of concurrent client

systems being connected and the rate of data-

on-demand from each client system.

Having known this, it will almost be

impossible to broadcast multimedia data to

numerous client systems from a single personal

computer system due to the fact that this

arrangement will either remarkably slow down

the transmission or hang up the server system.

The purpose of this work is to find an optimum

approach around this challenge.

Todd Lammle observed that routers, by

default, break up a broadcast domain - the set

of all devices on a network segment that hear

all the broadcasts sent on that segment

(Lammle 2007).

Design and Implementation

Design

All but the very simplest embedded

systems now work in conjunction with a real-

time operating system. A real-time operating

system manages processes and resource

allocations in a real-time broadcast. It starts

and stops processes so that stimuli can be

handled and allocates memory and processor

resources.

The components of a real-time operating

system depend on the size and complexity of

the real-time network being developed

(Sommerville 2007). For all systems, except

the simplest ones, they usually include (see Fig.

1):

- A real-time clock: The clock provides

signals to schedule processes

periodically.

AU J.T. 15(1): 23-31 (Jul. 2011)

Technical Report 24

- An interrupt handler: This component

manages aperiodic requests for

service.

- A scheduler: This component is

responsible for examining the

processes that can be executed and

choosing one of these for execution.

- A resource manager: Given a process

that is scheduled for execution, the

resource manager allocates

appropriate memory and processor

resources.

- A dispatcher: This component is

responsible for starting the execution

of a process.

In this work, additional facilities are

needed, such as: disk storage management and

fault management facilities that detect and

report system faults; and a configuration

manager that supports the dynamic

reconfiguration of real-time applications.

Fig. 1. Components of a real-time operating system.

Distribution Dynamics

Suppose there are n users hoping to

receive streams from a server. However, there

is no guarantee that the system will be able to

broadcast the said streams to all n users.

Using the unique approach proposed in

this work, all receiving devices can be placed

in a queue in the order of their attempt to

connect to the server as shown in Fig. 2.

Therefore, whenever the first subscriber (n-(n-

1)) requests a connection, he occupies the first

block of the queue, the second user (n-(n-2))

occupies the second block and so on. With this

pattern, the first user reads an amount of data

from the server, saves it temporarily in its

memory and consumes it from this temporal

storage. Whenever the second user requests a

connection, it shall be granted a permission to

stream continuously from the first user‟s

system. Then the third user does the same to

receive the stream from the second user (Reilly

and Reilly 2002).

According to a linear model for the

distribution of data among clients based on this

approach, the server shall only be responsible

for the first user‟s connection but also for all

users‟ authentication.

Fig. 2. A queue of receiving devices attempting to connect to the server.

AU J.T. 15(1): 23-31 (Jul. 2011)

Technical Report 25

A Further Review

As brilliant as the proposed technique

may seem to be, there are loopholes that can

completely bring the streaming strategy into

disrepute. Firstly, the latency will depend on

the number of systems connected. This means

that there will be absolutely no hope of

coherence in the distribution of TV broadcast

or all the subscribing client systems will be

forced to wait for a lengthy period of time to

achieve this. Secondly, consider a broadcast

chain of 1,000 users using the linear approach.

If the computer system of the 10
th

 subscriber

goes out of service, it means that the remaining

990 dependents will be completely cut off from

the broadcast (Hac 2003).

These are, of course, major drawbacks of

the linear approach. However, these can be

significantly reduced by merely introducing the

tree-based approach. Here every user

broadcasts on the average to two additional

users. This is represented schematically in the

diagram shown in Fig. 3.

Fig. 3. A tree-based model for the distribution
of data among clients.

This is obviously an enhanced form of

the linear approach as each strand of the

balanced tree shows linearity as in

(1)(2)(4)(8). However, the number of

users that can be cut off is inversely related to

the depth of the tree. The total number of

depths in a 1,000-user system is

2
d
-1 = 1,000, or

d = log10 1001 / log10 2, therefore,

d = 3.000434 / 0.301029,

d = 9.9673 ≈ 10.

The 10
th

 user can be found at the 4
th

depth with 7 other users. But between the 1
st

and the 4
th

 depth, there are 15 users, thus

leaving 985 users for evaluation. Since all 8

users at depth 4 will equally share the load of

all additional users, the maximum number of

users that can get disconnected as a result of

the 10
th

 user‟s failure is 985 / 8 ≈ 123 users.

This is a big 867-user improvement over the

linear approach. Note that this value shows a

more significant improvement as the depth

increases (Stevens 1994). Table 1 shows this

improvement for eventual 40
th

 subscriber

failure.

Table 1. Amount of disconnected systems due
to eventual 40th subscriber failure.

Number of

users in the

system

Amount of disconnected
systems due to eventual 40th

subscriber failure

Linear
approach

Tree-based
approach

1,000 960 29

10,000 9,960 310

100,000 99,960 3,123

1000,000 999,960 31,248

10,000,000 9,999,960 312,498

One possible drawback of this approach

is that the broadcast can be negatively

influenced if a remarkably slow computer

system comes in between. This can, however,

be avoided by setting a minimum system

requirement.

Checkmating Error Situations

In any of the two approaches, the goal is

to ensure the streaming restoration in the

presence of disconnected subscribers without

loss of data or increased transmission time.

This can simply be ensured in 3 steps by:

- Monitoring the amount of bytes read

by each system;

- Determining which parent node

disconnects;

- Then making the node with the

highest bytes read (among the failed

systems) the new parent node so that

all others will then re-attach to it.

This process, however, assumes that

every system in the network has read an

amount of bytes sufficient to be consumed all

through the shutdown and handshaking process

(period between loosing and regaining a

connection).

AU J.T. 15(1): 23-31 (Jul. 2011)

Technical Report 26

Yet Another Review

There is yet another challenge. Iimagine

that a football match is being broadcast and 8

people shout “it‟s a goal” at time t, followed by

16 people at time t+x, 32 at time t+2x, 64 at

time t+3x, and so on. This means that the

broadcast of the football match has no longer

been delivered under the pretence of live cast.

If the network latency between any two

systems is 100 milliseconds, then in the tree-

based approach it means that the number of

depths will correspond to the amount of

milliseconds of the time difference between the

first and the last subscribers. This means that in

a 30-depth arrangement the last set of

subscribers will lag the topmost subscribers by

about 3 seconds. What if one can, firstly, delay

the transmission by say, 5 seconds, in order for

all subscribers to read sufficient amount of

bytes and, secondly, determine the latency of

the network. With this knowledge, one can

ensure that a particular block of data gets to

every user before any other user can watch it

(Drake 2005, Sedgewick 2002).

To accomplish this task, one can use the

following time corrector:

t =( 



nd

d 2 l/f), (1)

where:

t = time to play (standard measurement in

milliseconds);

l = network latency between any two depths;

d = (depth position of the last system in

consideration);

f = d - 1;

n = number of depths.

There is a word of caution here. Firstly,

one cannot determine the latency of the first

depth position: latency starts from the second

depth position. However, the above formula

will compute the time of play for almost every

depth position including the first one.

Secondly, the users at the last depth do not

need to compute this time of play because the

last depth is the zeroth frame of reference in

Eq. (1). Hence, the users at the last depth

should just consume the data once received.

Time to play (t) is the amount of time a

subscriber should wait before consuming a

resource. In this regard, it means that every

subscriber system will compute its own time to

start watching the TV content and this time

increases down the tree.

Process Management

Real-time systems have to handle

external events quickly and, in some cases,

meet deadlines for processing these events.

This means that the event-handling processes

must be scheduled for execution in time to

detect an event and must have sufficient

processor resources to meet its deadline. The

process manager in a real-time operating

system is responsible for choosing processes

for execution, allocating processor and memory

resources, and starting and stopping the

execution of processes on a processor as shown

in Fig. 4.

Fig. 4. Actions of a real-time operating system
required to start a process.

The Java code snippets below show the

different segments described in the „Design‟

section above (Harold 2004).

/**
* lets every PC check if there's an update in
the system
*/
staticint current = 0;

/**
* lets the server set its IP
*/
static String serverIP = "";

Dispatcher

Start execution on an
available processor

Scheduler

Choose process for
execution

Resource Manager

Allocate memory and
processor

AU J.T. 15(1): 23-31 (Jul. 2011)

Technical Report 27

/**
* gets the current count so that systems can
know if there's a * change in the system.
* Infact, client systems should request this at
once in five seconds
*/
publicintgetCurrent() {
return current;
}

/**
* gets the IP of the server so that clients can
know whom to ping *to periodically measure
their performance.
* Infact, client systems should perform this
operation at start-up
*/
public String getServerIP() {
returnserverIP;
}

/**
* return the IPs (max of 2) that are to be fed by
the supplied IP
*/
public String getReceivers(String ip)
{
String receiver1 ="";String receiver2 ="";

if(smart.length-1 >= 2*extractIpIndex(ip)+1)
receiver1 =
String.valueOf(smart[2*extractIpIndex(ip)+1].g
etIp());
if(smart.length-1 >= 2*extractIpIndex(ip)+2)
receiver2 =
String.valueOf(smart[2*extractIpIndex(ip)+2].g
etIp());
return receiver1+"*.*"+receiver2;
}

/**
* return the IP of the system that serves this IP
streaming media
*/
public String getGiver(String ip)
{
String giver1 ="";
if(extractIpIndex(ip) <= 4 &&extractIpIndex(ip)
>= 0)
giver1 = getServerIP();
else if(smart.length-1 >= (extractIpIndex(ip)-
1)/2 &&extractIpIndex(ip) >= 0)
giver1 =
String.valueOf(smart[(extractIpIndex(ip)-
1)/2].getIp());

return giver1;
}

/**
* Searches for the index of the IP so that the
giver and receivers *can be computed. Returns
-1 if not found.
* This algorithm uses a linear search pattern. It
is quite * inefficient for large data
*/
publicintextractIpIndex(String ip)
{
int k = -1;
for(int i = 0;i<smart.length;i++)
{
if(smart[i].getIp().equals(ip))
k = i;
}
return k;
}

The process manager has to manage

processes with different priorities. For some

stimuli, such as those associated with certain

exceptional events, it is essential that their

processing should be completed within the

specified time limits. Other processes may be

delayed if a more critical process requires

service. Consequently, the real-time operating

systems have to be able to manage at least two

priority levels for system processes:

- Interrupt level: This is the highest

priority level. It is allocated to

processes that need a very fast

response. One of these processes will

be the real-time clock process.

- Clock level: This level of priority is

allocated to periodic processes.

For the implementation of this work, the

Java code snippet below shows a part of the

process manager that deals with interrupt

handling.

/**

 * removes a malfunctioning system from

distribution then *re-shuffules the remaining clients

based on the applied algorithm.

*/

publicbooleanremoveIP(String ip)

{

booleanbool = false;

Smart sm;

int k = -1;

for(int i = 0;i<smart.length;i++)

 {

AU J.T. 15(1): 23-31 (Jul. 2011)

Technical Report 28

if(smart[i].getIp().equals(ip))

 {

sm = smart[i];

set.remove(sm);

Smart[] smm = new Smart[set.size()];

Iterator iter = set.iterator();

for(int ii=0;ii<=smm.length-1;ii++)

 {

smm[ii] = (Smart) iter.next();

 }

smart = sl.mergeSort(smm);

current++;

bool = true;

 }

 }

returnbool;

}

There may be a further priority level

allocated to background processes (such as a

self-checking process) that do not need to meet

real-time deadlines. These processes are

scheduled for execution when processor

capacity is available. Within each one of these

priority levels, different classes of processes

may be allocated different priorities. For

example, there may be several interrupt lines.

An interrupt from a very fast device may have

to pre-empt the processing of an interrupt from

a slower device to avoid information loss. The

allocation of process priorities so that all

processors are serviced in time usually requires

extensive analysis and simulation.

Periodic processes are processes that

must be executed at specified time intervals for

data acquisition and actuator control. In most

real-time systems, there will be several types of

periodic processes. These will have different

periods (the time between process executions),

execution times and deadlines (the time by

which the processing must be completed).

Using the timing requirements specified in the

application program, the real-time operating

system arranges the execution of periodic

processes so that they can all meet their

deadlines.

Priority Handling

In order to actualize a stable distribution

paradigm, several time-delay and interrupt

factors were examined. These include: memory

availability to process multimedia request

(client side), network latency, and processor

availability (client side). In the course of this

work, it was concluded that network latency is

of a high relevance for today‟s computing

hardware.

Having considered the real-time nature of

the project, the distribution model uses merge-

sort algorithm in arranging client systems

according to their current performance state.

The merge-sort algorithm is an example of a

divide-and-conquer algorithm. In such an

algorithm, one divides the data into smaller

pieces, recursively conquers each piece, and

then combines the partial results into a final

result.

An implementation of the merge-sort

algorithm in Java language, as it is used in this

work, is shown below.

public class SortLatency {

public static Smart[] mergeSort(Smart[] data) {
returnmergeSortHelper(data, 0, data.length -
1);
 }

protected static Smart[]
mergeSortHelper(Smart[] data, int bottom, int
top) {
if (bottom == top) {
return new Smart[] { data[bottom] };
 } else {
int midpoint = (top + bottom) / 2;
return merge(mergeSortHelper(data, bottom,
midpoint),mergeSortHelper(data, midpoint + 1,
top));
 }
}

 /**
 * Combine the two sorted arrays a and b into
one sorted array.
 */
protected static Smart[] merge(Smart[] a,
Smart[] b) {
Smart[] result = new Smart[a.length +
b.length];
int i = 0;
int j = 0;
for (int k = 0; k <result.length; k++) {
if ((j == b.length) || ((i <a.length) &&
(a[i].getLatency() <= b[j].getLatency()))) {
result[k] = a[i];
i++;
 } else {

AU J.T. 15(1): 23-31 (Jul. 2011)

Technical Report 29

result[k] = b[j];
j++;
 }
 }
return result;
 }
}

Determining Latency

Latency can be programmatically

determined by sending a byte of data to a

system at a certain depth following all

connecting nodes in the tree-based connection

(Microsoft
®

 Encarta
®

 Multimedia Encyclopedia

2009). The value of the time taken to send and

receive the byte forms the round-trip latency.

This value should be computed over a range

and the average divided by 2 should be the

useful latency. The code snippet below shows

the Java language representation of this task.

InetAddress in =
InetAddress.getByName("targetName");
longstartTime = System.currentTimeMillis();
booleanbool = in.isReachable(5000);
longendTime = System.currentTimeMillis();
long latency = endTime-startTime;
if(bool)
System.out.println("Target is reachable,
latency is: "+latency);
else
System.out.println("System is unreachable,
timed-out after 5 seconds");

Tests, Results and Discussion

Tests

The server and clients systems were

tested for response time and stability. In the

case of response time, the following system

configuration was used to conduct the test as

shown in Table 2. Having built the data

transmission system over a socket connection

(point-to-point connection), data was

transmitted from the server down the nodes as

they are located down the balanced binary tree.

Also, the holistic system behavior was

studied under individual system failure.

Table 2. Parameters of the data transmission
system.

Component Quantity or Size

Number of Processors 2

Processor Speed 2.1 GHz each

RAM Size 2 GB Average

Other Parameters
Network Mode Peer-to-peer over

wireless LAN

Distance(s) between
systems

Average is less than
20 metres

Expected Multimedia
network throughput

150 kbps (average)

Results

After transmitting data in a depth-first

traversal pattern it was realized that the

response time was 0 milliseconds on the

average. This value shows a remarkable

improvement over the anticipated latency

(response time) of 100 milliseconds as

predicted in section „Another Review‟ above.

In addition, a break between failover and re-

transmission was noticed whenever there was a

breakdown in any client system.

The diagrams in Figs. 5 and 6 show what

happens if there is a failure in any of the

systems. Figures 7 and 8 show streaming and

captured media.

Fig. 5. A diagram showing a 7-user system.

Fig. 6. A recovery model assuming that a 6-
user system 6 is performing better than the 7-
user system.

AU J.T. 15(1): 23-31 (Jul. 2011)

Technical Report 30

Fig. 7. A server system is showing streaming media.

Fig. 8. A client system is showing captured media.

Discussion

It is strongly recommended that the 100-

millisecond delay be implemented before

feeding any client system with media data. This

recommendation may be ignored only if there

has been a major improvement in hardware and

network technologies.

AU J.T. 15(1): 23-31 (Jul. 2011)

Technical Report 31

In the case of the noticed break in

display, the system can be significantly

enhanced by buffering data on the client side

for the period of reception of the broadcast.

Conclusion

With all these considerations in place, the

system has definitely been trained so as to

behave optimally in such terrible load

conditions. In addition, this design will be able

to broadcast to an arbitrary amount of

subscribers with all the feeding coming from

one personal computer. As the technology

advances and the computing facilities get more

sophisticated, this work becomes more

meaningful; such that it could possibly become

a network paradigm.

Recommendations

1. It is recommended that the distribution

of data between different layers be properly

analyzed in a subsequent work.

2. The use of this model in a network area

where there is no multicast enabled device (or

where the user is unsure about it), is absolutely

encouraged.

3. Most Nigerian firms and aspiring

individuals may not have the financial base to

start an online broadcast system. This is the

primary reason of this research. It is highly

encouraged that it is used in such situations.

References

Drake, P. 2005. Data structures and algorithms

in Java. Prentice Hall, Inc., Upper Saddle

River, NJ, USA.

Hac, A. 2003. Mobile telecommunications

protocols for data networks. John Wiley &

Sons, Ltd., Chichester, West Sussex,

England, UK.

Harold, E.R. 2004. Java network programming.

3
rd

 ed., O‟Reilly Media, Inc., Sebastopol,

CA, USA.

Lammle, T. 2007. CCNA: Cisco
®

 certified

network associate study guide. 6
th

 ed., Wiley

Publishing, Inc., Indianapolis, IN, USA.

Microsoft
®
 Encarta

®
 Multimedia Encyclopedia.

2009. © 1993-2009, Microsoft Corporation,

Redmond, WA, USA.

Reilly, D.; and Reilly, M. 2002. Java network

programming and distributed computing,

Addison Wesley, Boston, MA, USA.

Sedgewick, R. 2002. Algorithms in Java. Parts

1-4. 3
rd

 ed., Addison-Wesley, Boston, MA,

USA.

Sommerville, I.F. 2007. Software engineering.

8
th

 ed., Addison-Wesley, Harlow, England,

UK.

Stevens, W.R. 1994. TCP/IP illustrated.

Volume 1: The protocols. Addison-Wesley,

Boston, MA, USA.

